
EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

313

GOVERNMENT PREFERENCES FOR
PROMOTING OPEN-SOURCE SOFTWARE: A

SOLUTION IN SEARCH OF A PROBLEM†

David S. Evans*
Bernard J. Reddy**

Cite as: David S. Evans and Bernard J. Reddy,
Government Preferences for Promoting Open-Source

Software: A Solution in Search of a Problem,
9 Mich. Telecomm. Tech. L. Rev. 313 (2003),

available at http://www.mttlr.org/volnine/evans.pdf

Part I. Introduction..315
Part II. Software Design and Intellectual

Property Protection.. 318
Part III. The Economics of Commercial Software............................. 324

A. Overview of the Commercial Software Business....................... 324
B. Production Method.. 327
C. Commercial Business Model and

Nature of Competition... 329
1. Performance of Commercial Software 331
2. Lessons from the Vertical Disintegration

of the Computer Industry... 335
3. Summary... 337

Part IV. The Economics of GPL Open-Source Software 337
A. Institutional Arrangements ...338

1. Free Software Foundation is the Ideological
Heart of the Movement.. 338

2. Copyleft and the Viral Aspect of the GPL
Promote the Goals of the FSF ... 339

B. Production of Open-Source Software .. 341
C. Incentives for Participating in Open-Source Projects 342

1. Why Individuals Work on Open-Source Software 342
2. Business Models Based on Open Source 344

† © 2002 by David S. Evans and Bernard J. Reddy. All rights reserved.
* Evans is with NERA Economic Consulting in Cambridge, MA and the Center for the

New Europe in Brussels, Belgium.
** Reddy is with NERA Economic Consulting in Cambridge, MA. We are grateful for

financial support for our research from Microsoft. We also thank Robert Hahn and Anne
Layne-Farrar for helpful comments and James Hunter, Bryan Martin-Keating, and Irina
Danilkina for exceptional research assistance.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

314 Michigan Telecommunications and Technology Law Review [Vol. 9:313

D. The Performance of Open Source ..351
1. Successes and Failures of Open-Source Software............. 352
2. Open-Source Projects under Development 354

E. Summary ..355
Part V. Comparisons of Proprietary and

Open-Source Software ... 356
A. Advantages and Disadvantages of Each Approach 356

1. Open Source ... 356
2. Proprietary Software .. 358

B. Open Source: Innovation and Imitation 359
C. The Future Evolution of Open Source

without Government Favoritism...363
Part VI. Government Interventions in the Software

Market to Assist Open Source.. 365
A. The Economic Approach to Government Intervention 366
B. Governments Proposals and Initiatives

Concerning Open Source.. 371
1. Initiatives... 372
2. Rationales Offered ... 378

C. Economic Arguments for Helping Open Source 383
1. Claims about the Superiority of

Open-Source Software... 384
2. Arguments for Promoting Open Source............................. 386

D. Releasing Software R&D Under the GPL................................. 390
Part VII. Conclusions.. 393

Governments around the world are making or considering efforts to promote open-
source software (typically produced by cooperatives of individuals) at the expense of pro-
prietary software (generally sold by for-profit software developers). This article examines
the economic basis for these kinds of government interventions in the market. It first
provides some background on the software industry. The article discusses the industrial
organization and performance of the proprietary software business and describes how
the open-source movement produces and distributes software. It then surveys current
government proposals and initiatives to support open-source software and examines
whether there is a significant market failure that would justify such intervention in the
software industry. The article concludes that the software industry has performed re-
markably well over the past 20 years in the absence of government intervention. There
is no evidence of any significant market failures in the provision of commercial software
and no evidence that the establishment of policy preferences in favor of open-source soft-
ware on the part of governments would increase consumer welfare.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 315

Part I. Introduction

Governments around the world are making or considering efforts to
promote open-source software (typically produced by cooperatives of
individuals) at the expense of proprietary software (generally sold by for-
profit software developers).1 Proposals include government subsidies of
research and development (R&D) for open-source software, standardization
on using open-source software, and procurement preferences for open-
source software. The European Parliament, for example, adopted a
resolution in September 2001 that calls on the Commission and Member
States “to promote software projects whose source text is made public.”2
The German Bundestag is considering legislation that would require
government agencies to use open source.3 Former French Prime Minister
Jospin created an agency whose mission will be to “encourage
administrations to use open source software and open standards.”4 The U.S.
government has supported R&D efforts that create software that must be
released under restrictive open-source licenses.5 Leaders of the open-source
movement are naturally spurring these efforts.6 But so are academics such as
Professor Lawrence Lessig of Stanford Law School.7

1. We use the term “open-source” to refer to software that is made readily available in the

form of source code. See infra Part II.
2. European Parliament resolution on the existence of a global system for the interception

of private and commercial communications (ECHELON interception system) (2001/2098(INI))
(Sept. 5, 2001) [hereinafter European Parliament resolution], at http://www.europarl.eu.int/
meetdocs/committees/itre/20020325/449496EN.pdf (last visited May 17, 2003).

3. Deutscher Bundestag 14 Wahlperiode [German Bundestag 14th Election Period] (Jun.
20, 2001), http://dip.bundestag.de/btd/14/063/1406374.pdf (last visited May 17, 2003). This
legislation differs from the Bundestag’s decision in March 2002 to use open source programs
such as Linux for some of its own IT needs. See Part VI below.

4. Law on the Establishment of the Agency for Information Technology and Communica-
tion in the Administration, Law No. 2001-737 of Aug. 22, 2001, J.O., Aug. 23, 2001, p. 13509
n.194, available at http://www.legifrance.gouv.fr/citoyen/jorf_nor.ow?numjo=PRMX0105055D
(last visited May 17, 2003).

5. See, e.g., Thomas Sterling, Beowulf Linux Clusters, at http://beowulf.gsfc.nasa.gov/
tron1.html (last visited May 17, 2003).

6. See, e.g., Press Release, Free Software Foundation, Richard Stallman Inaugurates
Free Software Foundation-India, First Affiliate in Asia of the Free Software Foundation (Jul.
20, 2001), at http://www.gnu.org/press/2001-07-20-FSF-India.html; Press Release, Free Soft-
ware Foundation, Richard M. Stallman Addresses Brazilian Congress on Free Software and
the Ethics of Copyright and Patents (Mar. 20, 2001) [hereinafter Stallman Addresses Brazilian
Congress], at http://www.gnu.org/press/2001-03-20-Brazil.txt; Cara Garretson, Open Source
Subject to Fiery Debate, InfoWorld, Apr. 12, 2002, http://www.infoworld.com/articles/hn/
xml/02/04/12/020412hnopensource.xml.

7. Lawrence Lessig, The Future of Ideas 247 (2001). See also Eben Moglen, Anar-
chism Triumphant: Free Software and the Death of Copyright, 4 First Monday 8, Aug. 1999,

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

316 Michigan Telecommunications and Technology Law Review [Vol. 9:313

This article examines the economic basis for these kinds of government
interventions in the market. Over the last twenty years, most governments
have chosen to increase their reliance on market forces to govern the
production and distribution of goods and services. Some previously
communist countries, such as Poland, have sharply reduced centralized
planning, privatized major national industries, and introduced market
competition. Some capitalist countries, such as the United Kingdom, have
reduced their reliance on government regulation and attempted to increase
the scope of market competition. Policymakers are generally more skeptical
than they were twenty years ago about the wisdom of having governments
control markets. There remains a wide spectrum of beliefs among
policymakers, but the spectrum has shifted. Industrial policy—having
governments pick winners and losers—has also lost some of its luster now
that the success stories of the 1980s—Japan in particular—have become
mired in seemingly interminable recessions. Against this economic
backdrop, it is a bit surprising to see so many countries entertaining policies
to promote a particular, namely open-source, method for producing and
distributing technology.8 This is surprising because governments have
recently been making fewer efforts to endorse particular methods.
Although economists often have a myriad of opinions on the merits of
any particular government intervention, there is a consensus about the
principles that one should follow in determining whether an intervention
is desirable.9 First, economists insist on the identification of a significant
market failure—a significant flaw or breakdown in the market process,

at http://firstmonday.dk/issues/issue4_8/moglen/index.html; Shawn W. Potter, Opening Up to
Open Source, 6 Rich. J.L. & Tech. 24 (Spring 2000), at http://www.law.richmond.edu/jolt/
v6i5/article3.html; Report to the President of the United States: Developing Open Source
Software to Advance High End Computing, President’s Information Technical Advisory
Committee, October 2000, at http://www.ccic.gov/pubs/pitac/pres-oss-11sep00.pdf (last vis-
ited May 17, 2003).

8. Other examples of market interventions with recent seemingly global appeal include
efforts to promote “clean” technologies and efforts to reduce pharmaceutical prices (some-
times by voiding patent rights). Resolutions in the Netherlands and the United Kingdom
provide subsidies to users of renewable energy sources, and the French and Russian govern-
ments have approved several decrees to regulate drug supplies to reduce prices. Paul Brown,
Hewitt’s £20m will end solar power eclipse, The Guardian, Mar. 26, 2002, available at
http://www.guardian.co.uk/business/story/0,3604,674067,00.html; Energy Market Trends in
The Netherlands 2000, http://www.ecn.nl/library/reports/2000/p00003.html (last visited May
17, 2003); Industry suffers as European governments target pharmaceutical spending, at
http://www.inpharm.com/External/InpH/1,,1-0-0-0-inp_intelligence_art-0-5523,00.html (Oct.
1, 2001); Ludmila Maksimova, Russian Government Takes Measures to Regulate Pharmaceu-
tical Market, at http://www.bisnis.doc.gov/bisnis/isa/9902phar.htm (Feb. 1999).

9. See, e.g., Joseph E. Stiglitz, Principles of Microeconomics 506 (2d ed. 1997).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 317

which prevents competition from giving consumers the greatest possible
benefits given scarce resources.10 Second, economists want some
assurance that solving the market failure through government
intervention will actually improve things (i.e., make consumers better
off).11 That depends on whether it is possible to devise an intervention
that solves the market failure without imposing direct and indirect costs
that swamp the benefits.

This article examines whether there is evidence of a significant mar-
ket failure in the production of software, and whether the proposals
being considered might provide a cost-effective solution to such a mar-
ket failure.12 We reach the following conclusions:

• There is no evidence of a significant market failure that
needs fixing.

• There is no reason to believe that the proposed government
policies would actually increase social welfare.

Part II provides background on software code and the role of
intellectual property in protecting investments in code. This helps clarify
issues concerning incentives that individuals and firms have for
developing proprietary and open-source software. Part III describes the
industrial organization and performance of the proprietary software
business; the industry is performing well, and there is no obvious market
failure that needs fixing. Part IV describes how the open-source
movement produces and distributes open-source software. An
understanding of these issues is needed to analyze some of the proposed
government policies and how they would (or would not) affect the
development of open-source software. Part V looks at advantages and
disadvantages of the open-source and proprietary approaches to software
and discusses the possible evolutionary paths for the software business in
the absence of government intervention. Again, this is needed to analyze
some of the proposed government policies and their possible effects on
the development of open-source software. Part VI surveys government
programs and proposals to promote open-source software and then

10. See infra notes 207 and 208.
11. See infra notes 207 and 208.
12. It does not deal with some of the ideological arguments for supporting open source,

such as Free Software Foundation’s belief that proprietary software owners’ negative attitudes
about voluntary cooperation “pollute[s] our society’s civic spirit.” Richard Stallman, Why
Software Should Not Have Owners, at http://www.gnu.org/philosophy/why-free.html (last
updated Feb. 8, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

318 Michigan Telecommunications and Technology Law Review [Vol. 9:313

analyzes these programs and proposals using the market-failure
framework discussed above. Part VII presents brief conclusions.

Part II. Software Design and Intellectual
Property Protection

Many things go into the creation of computer software before there
is any code. The creation of a software package follows some conception
of the purpose of the package—for example, to check spelling in docu-
ments, to determine whether a number is prime, or to control a particular
piece of hardware. Going from the conception to a workable package
requires the producers to develop architecture for the software that will
guide programmers in the coding process. It may also require special
numerical algorithms or programming tricks. As a result, a software
package may depend on intellectual property, protected by patents or
trade secrets, that is independent of the code that is actually written. For
example, the popular “MP3” audio format is based on audio coding pat-
ents owned by Fraunhofer IIS-A.13

Most programs are written in one of several “high-level” languages.
Popular high-level languages include C, C++, Java, Visual Basic, and
Pascal. These languages often have commands that look like a written
language (usually English) and have meanings that are consistent with
written language. For example, “If” and “While” are common com-
mands in many languages. The commands available in high-level
languages provide a shorthand for more detailed instructions provided to
computers, thus enabling the programmer to avoid many repetitive tasks.
For example, Windows is written in C and C++, many custom applica-
tions written by corporate programmers for their companies’ internal use
are written in Visual Basic, most computer games are written in C or
C++, much server-side “business logic” for Web sites is written in Java,
and Linux (a popular open-source operating system) is written predomi-
nantly in C. These languages have “compilers” that translate the
commands into binary code—a series of 1s and 0s—that the computer
hardware understands.14

13. See Mp3licensing.com—About Us—Fraunhofer Gesellschaft, at http://www. mp3licensing.

com/about/fhg.html (last visited May 17, 2003).
14. Some languages have interpreters rather than compilers, but the difference is irrele-

vant for this article.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 319

Figure 1 shows a simple example of a program. The first panel
shows the design of the program. The second panel shows the C++ code
that accomplishes the purposes of this design. The third panel shows
compiled binary code.15

Figure 1
Simple Program: from Design, to

Source Code, to Binary Code

Let i = 0.
Let x = 1.

Multiply x by 2.
Add 1 to i.

Is i < n? Output x.
no

yes

int main(int, char*)
{

long i, n, x;
cin >> n;
i = 0;
x = 1;
while (i < n) {

x = x * 2;
i = i + 1;

}
cout << x;
return 0;

}

… 00 35 65 B8 1F 38
8C FF 75 B8 E4 03 B3
8C 0F 48 1C 00 00 00
33 BD 93 E5 08 0F 58
4B 00 00 00 B8 E7 C1
B8 64 81 B3 8F 27 04
B2 8F BE 02 33 FF B3
BF 47 F2 75 05 15 8E
DC 41 00 00 38 4C 0C
B3 7C 47 02 B3 3C E7
97 93 E5 02 47 03 92
64 C1 B8 67 81 B2 8F
03 6C 75 05 65 8E D9

The value of a program resides in the high-level software code

(source code) that accomplishes the objective of the program (second
panel) as well as the architecture, algorithms, and other elements that
help the programmers write the code. In other words, if a programmer
had the information in the left pane of Figure 1, he would have a signifi-
cant head start in writing software code that accomplished the objective
of the package. If a programmer had just the source code in the middle
pane, as he would with open source programs, he would probably be
able to figure out the architecture, algorithms, and other helpful tips for
writing the code. He would also have the source code that he could com-
pile and run. But if a programmer had only the binary code in the right
pane, as he would with the typical proprietary program, he would have a
very difficult time figuring out the source that generated that binary code
or any of the intellectual property that was relied on in creating that bi-
nary code.16

15. The binary code is written in hexadecimal, which provides a compact way of writing

sequences of 0s and 1s.
16. The source would be difficult, but not impossible to determine. Several attempts are

underway to clone existing software by reverse engineering. For example, the WINE project is
attempting to clone enough parts of Windows so Windows applications can be run on Unix-like

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

320 Michigan Telecommunications and Technology Law Review [Vol. 9:313

Software creators can use various mechanisms to prevent others
from using their software and any intellectual property embodied in that
software. Patents can protect algorithms and other creative aspects of
software design. Copyrights on software code (binary and source) could
prevent others from either copying the code without permission or using
the code as an input into a product of their own. Finally, and perhaps
most importantly, it is possible to limit seriously the ability of others to
discover the intellectual property of software—including the source
code—by distributing the software only in binary form. Creators of
software can decide to rely on none, some, or all of these forms of intel-
lectual property protection. Although there are examples along this full
continuum of protection, the most common forms of protection are trade
secrets (through distributing the code only in binary form) and copy-
right.17

Two distinctions are useful for summarizing the major types of soft-
ware. The first is the distinction between distributing software as source
code (“open source”) or as binary code (“proprietary”).18 The second is
between distributing software at no direct charge (“unpaid”)19 versus di-
rect charge (“paid”) software distribution.20

Over the years many people and groups of people have written soft-
ware for which they have chosen not to exercise any property rights and
have even made efforts to distribute the software widely.21 Before the

operating systems without having to be rewritten. See WINE Development HQ—About, at
http://www.winehq.com/about.shtml (last visited May 17, 2003).

17. Parties who hold copyrights on open-source software can bring legal action against
infringers to enforce the terms of their licenses, as is also true for proprietary software. The
Free Software Foundation reports that it has settled many such cases without going to trial.
See Eben Moglen, Enforcing the GNU GPL, at http://www.gnu.org/philosophy/enforcing-
gpl.html (Sept. 10, 2001). MySQL AB brought claims against NuSphere related to violations
of its license terms. MySQL, FAQ on MySQL v. NuSphere Dispute, at http://
www.mysql.com/news/article-75.html (Jul. 13, 2001). These claims were later settled.
MySQL Press Release, MySQL AB and Nusphere Corporation Announce Settlement (Nov. 7,
2002), at http://www.mysql.com/press/release_2002_14.html.

18. Definitions of “open-source” software are more complicated than are suggested by
this simple dichotomy, which is sufficiently precise for current purposes.

19. We avoid using the word “free” in this context because the term “free software” de-
notes a specific type of “open-source” software.

20. We say “direct” because software producers sometimes realize revenues indirectly
from selling complementary products or services.

21. This is somewhat analogous to what many academics do with their writings. Academ-
ics try to widely distribute their writings, often incurring production and distribution costs, to
gain recognition for themselves and their ideas. Recognition is the currency of the realm and
worth more than what academics could ever get from selling their writings. Obviously, if peo-
ple were willing to pay (much) for academic writings, this pattern would change. And, indeed,

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 321

Internet made distribution easy, the source code for such software might
be distributed on paper or electronic media such as computer tapes and
disks. For example, programs to implement various mathematical func-
tions were widely available in the scientific and technical communities.
In other cases people have not distributed the source code but have freely
distributed the binary code without enforcing limitations on further dis-
tribution and use. This type of software is usually called “freeware.”22

The spread of personal computers in homes and offices created a
mass market for software. Not surprisingly, many commercial companies
emerged to write software for profit. These companies initially protected
their investments by enforcing copyrights on their software and by dis-
tributing the software in binary form to prevent reverse engineering. By
the mid-1980s, it became possible to obtain patents on certain aspects of
software, and many companies chose this route for protecting their intel-
lectual property.23 The number of software patents awarded annually to
U.S. inventors has increased from 829 in 1986 to 7,398 in 2000.24

Most, but not all, proprietary software is sold at a price, and the
source code is usually not made available. The mathematical package
Mathematica is licensed to commercial users for $1,880 or $3,135,
depending on the platform, and is available for many different kinds of
computing platforms.25 Intuit’s QuickBooks accounting package costs
between $199 and $500 depending on the edition.26 Collections of

scientific writings that contain valuable intellectual property are not distributed widely without
proper intellectual property protection.

22. The term “shareware” is typically applied to software distributed freely in binary
form. However, the copyright holder requests that users pay for the product, possibly after an
initial trial use period. In the 1980s, famous shareware programs included word processors
(PC-WRITE), databases (PC-FILE), and communications programs (ProComm). Both free-
ware and shareware still exist today.

23. “In software, there is no single clear-cut decision that opened the floodgates for pat-
enting. Instead, we note that in [our] sample, the pace of patenting of [software] firms is trivial
prior to 1986.” Samuel Kortum & Josh Lerner, Stronger Protection or Technological Revo-
lution: What Is Behind the Recent Surge in Patenting?, 48 Carnegie-Rochester
Conference Series on Public Policy 247, 296 (Bennett T. McCallum & Charles I. Plosser
eds., Jun. 1998).

24. Number of patents awarded to U.S. inventors with International Patent Classification
assignment to subclass G06F (“Electric Digital Data Processing”). Delphion Research, at
http://www.delphion.com/ (last visited May 13, 2003).

25. Mathematica: The Way the World Calculates, at http://store.wolfram.com/view/app/
mathematica/ (last visited May 17, 2003).

26. Quickbooks Basic 2003 Overview, at http://www.quickbooks.com/products/basic/
pricing.html (last visited May 17, 2003); Quickbooks Premier 2003 Overview, at
http://quickbooks.intuit.com/qbcom/jhtml/skins/prod_ovw.jhtml?ssaPath=qb_2003_win_premi
er_1user&productGroup=premier&priorityCode=0273400000 (last visited May 17, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

322 Michigan Telecommunications and Technology Law Review [Vol. 9:313

“utility” programs for Windows (such as Norton Utilities) typically are
priced in the range of $40–$70.27 Final Fantasy X, a popular game for
Sony’s PlayStation 2 console released in 2001, sells for around $40 a
copy;28 newer video games, such as Splinter Cell, sell for around $50 a
copy.29

“Open-source” software is distributed under very different terms
than is typical proprietary software. First, the source code (although pro-
tected by copyright, as with proprietary software) is made publicly
available. Second, the software is distributed under a license that enables
people to use the source code only if they comply with certain condi-
tions. The BSD license,30 perhaps the oldest open-source license, has
been modified, but typically allows the free use of the source code so
long as the original copyright is acknowledged. People who modify the
source code can choose to redistribute the binary code, the source code,
both, or neither. For example, early versions of Sun’s variant of the Unix
operating system were based on a BSD version of Unix;31 the latest ver-
sion of the Macintosh operating system is also based in part on a BSD
version of Unix.32 Importantly, people can charge for the modified code
and need not give away their modifications.33

Although many widely used open-source software products have
been distributed under a BSD-style license, the General Public License

27. For example, Symantec charges $50 for the standard version of its antivirus

program and $70 for SystemWorks, a utility suite. Norton Antivirus 2003, at http://
www.symantecstore.com/dr/sat/ec_MAIN.Entry17c?CID=48782&SID=27674&SP=10007&P
N=5&PID=367322&DSP=&CUR=840&PGRP=0&CACHE_ID=48782 (last visited
May 17, 2003); Norton SystemWorks 2003, at http://www.symantecstore.com/dr/sat/
ec_MAIN.Entry17c?CID=48782&SID=27674&SP=10007&PN=5&PID=426992&DSP=&C
UR=840&PGRP=0&CACHE_ID=48782 (last visited May 17, 2003).

28. EBGames.com, Final Fantasy X, http://www.ebgames.com/ebx/categories/products/
product.asp?pf_id=182336 (last visited May 17, 2003).

29. EBGames.com, Tom Clancy’s Splinter Cell, http://www.ebgames.com/ebx/
categories/products/product.asp?pf_id=232539 (last visited May 17, 2003).

30. This license was created by the University of California at Berkeley primarily to dis-
tribute Unix-related software. Peter H. Salus, A Quarter Century of UNIX 142–143
(1994).

31. Id. at 216.
32. UNIX Based: The Open Desktop, An Open Source Core Lets You Check Out What’s

Under the Hood, at http://www.apple.com/macosx/technologies/darwin.html (last visited May
17, 2003).

33. E.g., Sendmail, Inc. sells a modified version of its open-source “Sendmail”
e-mail server software. Sendmail, Company Overview, at http://store.sendmail.com/cgi-
bin/smistore/company.jsp?BV_UseBVCookie=Yes&filepath=overview/index.shtml&heading=
Company%20Overview (last visited May 22, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 323

(GPL)34 has become the dominant form of licensing for open-source
software.35 Many of the key persons and institutions spearheading the
open-source movement believe that this is the license that will best
achieve their goals.36 If a program is distributed under the GPL, the
source code for the program is made available (as is also true with other
open-source licenses). Others have the right to modify the program’s
source code for their own use without restriction and without charge. But
anyone who distributes a modified version of a GPL program must like-
wise release the modified program under the GPL, and he must make the
source code for the modified program available, essentially for free.37
That precludes a firm from building a proprietary product based on soft-
ware licensed under the GPL since all enhancements to a GPL program
must be made available to customers and competitors alike. Because of
this feature, the GPL is sometimes called “viral.” Programs relying on
software licensed under the GPL are “infected” by the GPL. Linux is
perhaps the most popular software released under the GPL.38

The remainder of this article primarily considers two major types of
software at the center of public-policy debates: proprietary software and
open-source software distributed under the GPL.39 The public policy

34. The GPL is legal language written by the Free Software Foundation and is freely

available at http://www.fsf.org for use by others.
35. Hard information on the importance of various licenses is unavailable. As discussed

below, SourceForge, a major hosting site for open-source projects, suggests that roughly half
of the projects hosted at the site rely on the GPL at least in part (license information is not
provided for all projects, and some projects have multiple licenses). Of those projects where
license information is available, roughly 70 percent rely on the GPL, at least in part. See
http://sourceforge.net (last visited May 6, 2003).

36. See infra Part IV.A.1.
37. Any recipient of a copy of modified code distributed under the GPL can redistribute

the code. Since it is impossible to restrict the number of copies that this recipient and subse-
quent recipients make, there is no effective restriction on supply. The competitive price of
software distributed under the GPL, therefore, tends to zero.

38. The key persons and institutions favoring the GPL also favor the term “GNU/Linux”
over simply Linux to emphasize that the operating system commonly called “Linux” relies on
much more than just the Linux “kernel.” Richard Stallman, What’s in a name?, at
http://www.fsf.org/gnu/why-gnu-linux.html (last visited May 18, 2003). In keeping with
common usage, however, we use the term “Linux” for both the operating system and the ker-
nel.

39. Another type is software that is developed by people or businesses for their own use.
Most large companies, and many smaller ones, have written software applications that accom-
plish particular functions (e.g., accounting). This software is proprietary, but the company
typically chooses not to license it to others. Firm-specific software would typically provide
little or no benefit to other firms (except perhaps to competitors as a form of market intelli-
gence).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

324 Michigan Telecommunications and Technology Law Review [Vol. 9:313

debate centers around them for several reasons: first, most of today’s
widely used software is proprietary; second, the GPL currently appears
to be the most popular license for open-source software; and given the
distribution restrictions of the GPL, proprietary software and GPL
software (unlike BSD software) face a potentially uneasy coexistence.

Part III. The Economics of Commercial Software

An analysis of government intervention in an industry should begin
with an examination of that industry: is there a market failure that can be
addressed by intervention? To that end, we provide an overview of the
commercial software industry and its changes over time.

Worldwide commercial software40 is a $171 billion business based
on revenue.41 Revenues from U.S.-based commercial software companies
amounted to over $90 billion in 2000.42 That makes the U.S. commercial
software industry larger than the motion picture industry ($74 billion in
2000) and around a fifth of the size of the auto industry ($408.6 billion
in 2000).43 Generally, software is a relatively inexpensive but critical in-
put into the production of computing services. This section describes the
structure and performance of the commercial software sector.44

A. Overview of the Commercial Software Business

The size of the software industry has increased dramatically over the
past few decades. From 1988 to 2000, revenues from worldwide
proprietary software increased from $35 billion to $171 billion
(measured in 2000 U.S. dollars)—an annual growth rate of over 14

40. In this section, “commercial software” is synonymous with “proprietary software li-

censed to others.” Some commercial firms do attempt to develop open-source software to
license to others; they are probably a negligible component of the total commercial software
industry.

41. Richard V. Heinman et al., IDC Report #25569, Worldwide Software Market Forecast
Summary, 2001–2005, Table 1 (Sept. 2001).

42. Id. at Table 4.
43. Sherlene K. S. Lum & Brian C. Moyer, Gross Domestic Product by Industry

for 1998–2000, Survey of Current Business 30, Table 8, available at http://
www.bea.doc.gov/bea/ARTICLES/2001/11november/1101gdpxind.pdf (last visited May 18,
2003).

44. For more information regarding the software industry, see Kenneth G. Elzinga &
David E. Mills, PC Software, 44 Antitrust Bull. 739 (1999).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 325

percent.45 See Table 1. In the United States, the number of software firms
more than doubled between 1992 and 1999, and the number of employees
more than tripled.46 IDC, the leading vendor of data on the software
industry, commented in its 2001 software market forecast that, “it is likely
that there are more than 10,000 companies competing in the packaged
software market . . .”47 In the United States, the Census Bureau identified
almost 9,000 software firms with over 300,000 employees in 1999.48

Table 1
Packaged Software Revenues (in millions)

 All Packaged Software PC Software Only

 Worldwide U.S./North

America

Worldwide U.S./North

America

1983 NA $13,486 NA $2,455
1988 $34,519 $34,028 NA $8,195
2000 $171,310 $90,613 $77,455 NA

Note: All numbers are in year 2000 dollars.

“U.S./North America” means the location of the software vendor, not the
customer.
1983, 1988 “U.S./North America” numbers are United States only.
2000 “U.S./North America” numbers are for North America.
2000 “PC software only” number combines revenues for “32-bit Windows”
and “other single user” operating environments. This numbers include reve-
nues from software sold for PC-based servers.

Source: IDC Report #4046, 1989 Software Review and Forecast, 6-7, 18 (Apr. 1989); IDC
Report #9358, 1994 Worldwide Software Review and Forecast, Table 2, pp. 12-31 (Nov. 1994);
Richard V. Heinman, Dennis Byron, R. Paul Mason & Melita Marks, IDC Report #25569,
Worldwide Software Market Forecast Summary, 2001 - 2005, Tables 1, 16, 17, 18 (Sept. 2001);
Bureau of Labor Statistics Data: Consumer Price Index—All Urban Consumers,
http://data.bls.gov/servlet/SurveyOutputServlet (last visited Apr. 18, 2003).

45. Paul Mason et al., IDC Report #8324, 1993 Worldwide Software Review and Fore-

cast, Table 2 (Dec. 1993); Heinman, supra note 41, at Tables 1, 16.
46. U.S. Census Bureau, Number of Firms, Number of Establishments, Employment, and

Annual Payroll by Employment Size of the Enterprise for the United States, All Industries—
1992 [hereinafter U.S. Census Bureau—1992], http://www.census.gov/csd/susb/usalli92.xls
(last visited May 18, 2003); U.S. Census Bureau, Number of Firms, Number of Establish-
ments, Employment, and Annual Payroll by Employment Size of the Enterprise for the United
States, All Industries—1999 [hereinafter U.S. Census Bureau—1999], http://www.census.gov/
csd/susb/usalli99.xls (last visited May 18, 2003). Figures based on the Bureau’s classification
of “Prepackaged Software” (NAICS 5112 for data collected in 1997 and later; SIC 7372, prior
to 1997).

47. Heinman, supra note 41, at 15.
48. U.S. Census Bureau—1999, supra note 46.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

326 Michigan Telecommunications and Technology Law Review [Vol. 9:313

IDC divides software into three categories: “system infrastructure
software,” which includes operating systems; “application development
and deployment software,” which includes programming tools as well as
spreadsheets; and “application software,” which includes applications
such as word processors. As shown in Table 2, applications software has
the largest share of revenue (45 percent), followed by operating systems
and other system infrastructure software (31 percent), followed by appli-
cation development software (23 percent).

Table 2
Worldwide Packaged Software Revenues

by Software Category, 2000

Category Revenues (Millions) Percent of Total

Application development and
deployment

$40,244 23%

Applications
 Packaged enterprise

applications
 Other applications

$77,280
$50,232

$27,048

45%
29%

16%

Systems infrastructure software $53,786 31%
Total $171,310
Note: “Application development and deployment” includes programming tools and spreadsheets;
“enterprise applications” includes vertical applications—accounting, human resources, electronic
engineering, etc.; “other applications” includes applications software other than enterprise applications;
“systems infrastructure software” includes operating systems.
Source: Richard V. Heinman, Dennis Byron, R. Paul Mason and Melita Marks, IDC Report #25569,
Worldwide Software Market Forecast Summary, 2001–2005, Tables 1, pp. 1-2, 15 (September 2001).

Compared with many other industries, the software industry is rela-

tively unconcentrated. One conventional measure of industry
concentration is the total share of sales accounted for by the four largest
firms. In 2000, the four largest firms in the proprietary software industry
accounted for 26.7 percent of total revenues.49 According to the latest
Census data, over 47 percent of all manufacturing industries have a four-
firm concentration ratio greater than that of the software industry.50

49. Heinman, supra note 41, at 27–29.
50. U.S. Census Bureau, Concentration Ratios in Manufacturing: 1997 Economic Cen-

sus at pp. 7, 16 (Jun. 2001) [hereinafter Concentration Ratios – 1997], http://www.census.gov/
prod/ec97/m31s-cr.pdf (last visited May 18, 2003). Figures based upon value of shipments for
industries categorized at the 4-digit NAICS industry level.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 327

A second measure of industry concentration is the Herfindahl-
Hirschman Index (HHI), widely used in antitrust analysis.51 HHIs can
range from zero (a large number of firms with infinitesimal market
shares) to 10,000 (a monopoly with 100 percent of the market).52 In
2000, the HHI for the software industry was 244,53 a relatively low HHI
when compared with other familiar industries such as automobiles
(2,506) or breakfast cereals (2,446).54

There is also a great deal of turnover among the leading firms, which
indicates that firms generally are not entrenched. Five of the top ten
companies in 1990 did not make the list in 2000, either because they
went out of business, they were acquired by another company, or their
share of software revenues dropped over the decade.55 Compare this to
the turnover in pharmaceuticals, another industry based on intellectual
property. Eight of the ten leading pharmaceutical companies in 1990
were still in the top ten in 2000.56

B. Production Method

The production of commercial software consists primarily of initial
costs. Software development is generally an iterative process, with the

51. The HHI is equal to the sum of the squared values of each firm’s share of the market.

For example, a market that consists of four firms with market shares of 35 percent, 30 percent,
20 percent and 15 percent would have an HHI equal to 2,750 (35 x 35 + 30 x 30 + 20 x 20 +
15 x 15). See http://www.usdoj.gov/atr/public/testimony/hhi.htm.

52. The Antitrust Division of the U.S. Department of Justice and the Federal Trade
Commission consider industries with HHIs of less than 1,000 to be competitive and those with
HHIs of 1,800 or greater to be cause for significant competitive concern. U.S. Department of
Justice and Federal Trade Commission, 1992 Horizontal Merger Guidelines, Section 1.5 Con-
centration and Market Shares (revised Apr. 8, 1997), available at http://www.usdoj.gov/atr/
public/guidelines/horiz_book/15.html (last visited May 18, 2003).

53. Heinman, supra note 41, at Table 2, pp. 27–29 (listing figures based on worldwide
packaged software revenue). This report provides firm-level data for the 100 largest software
vendors which covers 61 percent of packaged software. Firms ranked 80th to 100th largest in
size each hold one percent of the market. For purposes of this calculation, we assume the
remaining 39 percent of the market is composed of similar firms whose market shares also
equal one percent (an assumption that produces the highest possible HHI estimate).

54. Concentration Ratios—1997, supra note 50. Figures based on the top 50 firms in
1997 and the Bureau’s classification of “Motor Vehicles” (NAICS 3361) and “Breakfast Cere-
als” (NAICS 31123). In fact, the same document shows that 55 percent of industries,
calculated at the four-digit level, had a higher HHI than the software industry.

55. Mason, supra note 45, at Table 2, pp. 10–16; Heinman, supra note 41, at Table 2, pp.
27–29.

56. IMS Health, M&A Drives Decade of Change, at http://www.ims-global.com/insight/
news_story/0104/news_story_010425.htm (Apr. 25, 2001).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

328 Michigan Telecommunications and Technology Law Review [Vol. 9:313

development of typical commercial software including the following
steps:

1. Identifying customer needs. After starting with a good idea,
the developer needs to learn which features customers are
likely to value, which features are likely to be considered es-
sential, how different user interfaces can make the software
easier to use, and so forth. The importance of these aspects
of software design may well differ substantially across dif-
ferent types of software; computer games and email server
software are likely to be used by different customers, with
different capabilities.

2. Designing the software. This generally includes high-level
concepts, such as what major modules will do, how the
modules will communicate with each other (and with other
computers, if relevant), and so forth.

3. Coding, building, and testing. Programmers typically test
their code frequently, often in small pieces. Large software
systems go through frequent “builds,” in which all the dif-
ferent modules that have been initially tested by the coders
are collected together, “built” into the complete product, and
then subjected to a battery of tests. The testing reveals flaws,
which require recoding and sometimes redesign. Flaws can
include “bugs” (errors that cause the program to behave in
undesirable ways in some circumstances) and performance
problems. Redesign sometimes involves the dropping or
simplification of problematic features.

Once the design/code/build/test process is completed, the product is
ready to ship (documentation is typically developed along the way). In
general, the variable costs for each unit of software shipped are low: the
cost of a CD and a slender manual will seldom exceed a few dollars.57
Sales, marketing, and promotional expenses can take different forms de-
pending on the type of software and target customer. Software for large
servers is often expensive (in the tens of thousands of dollars or more)
and is often sold through a direct sales force. Mass-market software for
PC end users is often priced at less than $100 and might be sold through

57. The fat manuals of the past have largely been replaced by electronic documentation,

available either on CD or the Web.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 329

retail stores, over the Web, through computer manufacturers, via direct
mail solicitation, and so forth.

Support costs can also widely vary, depending on the type of soft-
ware. Complicated software (such as for large servers) might have a
separate support agreement. Mass-market software for end users might
provide limited support via phone or email. Developers of mass-market
software have incentives to design software that has the desired func-
tionality without requiring support; one or two technical support calls
can wipe out much or all of the margin on a product retailing for less
than $100.58

After a product ships, two processes often begin: maintenance work
on the just-shipped product to fix bugs or add new features; and design-
ing the next version of the software.59 Games software might not, strictly
speaking, have “new versions,” but successful games typically have se-
quels.60

One feature of the software industry emerges clearly from this re-
view: average costs of a software product fall with volume. In general, a
large fraction of total costs for any given product come from the design,
coding, and testing stages. For PC software, the largest purely variable
cost61 will sometimes be support, sometimes materials and packaging.
But for typical PC software, these costs are low compared with the usual
development costs.62

C. Commercial Business Model and
Nature of Competition

As discussed above, the development of commercial software gener-
ally involves high initial costs and relatively low marginal costs. In order
to stay in business, a successful firm must charge substantially more than

58. For example, PC manufacturer eMachines charges $20 per out-of-warranty support

incident; presumably the cost to eMachines of a support call is in the same ballpark. EMachi-
nes, Customer Support, at http://www.emachines.com/support/tech_support.html (last visited
May 13, 2003).

59. It is not unusual for a software developer to have multiple versions of a product under
simultaneous development, with feedback across the versions.

60. We previously mentioned the game Final Fantasy X, supra Part II, the 9th sequel of
the first Final Fantasy game.

61. Marketing and selling costs may be substantial, but they do not generally increase
automatically with a spurt in sales (except for sales commissions and the like).

62. See, e.g., Elzinga, supra note 44, at 756.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

330 Michigan Telecommunications and Technology Law Review [Vol. 9:313

marginal cost in order to cover its fixed costs.63 Most software projects
are losers in the marketplace, but the financial bonanza available for a
winner gives firms incentives to invest.64 Me-too products offering little
functionality beyond what is in competing products are seldom attractive
for commercial firms to develop, unless the development costs are ex-
ceptionally low. With a me-too product, price competition from other
vendors can quickly destroy profitability. As a result, commercial soft-
ware firms (like many firms in other industries) prefer to differentiate
their products from those of their competitors.

Because software production has high first costs and low marginal
costs, competition within any particular product category has at least
some elements of a “natural monopoly”: higher volume means lower
average costs, which means profitability can be achieved at a lower
price. Such characteristics can lead a market to have only a very small
number of active suppliers.

This potential for “natural monopoly” is increased if a software
category exhibits “network effects.” Network effects can arise on either
the demand side or the supply side of the market. On the demand side, if
most business users of computers use (for example) the same word proc-
essing program, then it is relatively easy to trade files, to transfer
knowledge of how to use software, and so forth. On the supply side, the
availability of complements can give rise to network effects. The more
applications existing for a given software platform, the more desirable
the platform is for users; the more users a software platform has, the
more desirable the platform is for developers.

Not all software categories exhibit strong network effects, but those
that do provide the potential for particularly large rewards for a winning
program; these network effects provide substantial benefits to users,
enabling a winning program to make more sales. But category leaders
can and do get replaced.65 In a software category with strong network

63. This may not be true for every product, especially if a firm produces complementary

products. For example, AOL gives away its access software and attempts to make money by
selling its Internet service, by selling advertising, and by making financial arrangements with
vendors that sell their own goods and services through AOL. See AOL Time Warner, 2002
Annual Report 25–27, http://www.aoltimewarner.com/investors/annual_reports/pdf/2002ar.pdf
(May 18, 2003).

64. Josh Lerner, The Returns to Investments in Innovative Activities: An Overview and an
Analysis of the Software Industry, in Microsoft, Antitrust and the New Economy: Se-
lected Essays 463 (David S. Evans ed., 2002).

65. See David S. Evans, Albert Nichols, & Bernard Reddy, The Rise and Fall of
Leaders in Personal Computer Software, in Microsoft, Antitrust and the New Economy:
Selected Essays 265, 267 (David S. Evans ed., 2002); Stan J. Liebowitz & Stephen E.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 331

effects, competition is typically dynamic competition for the market,
rather than static price competition within the market.66 Firms compete
by coming out with the best, most attractive new products, thereby at-
tracting the bulk of the customers, not by dropping prices for existing
products. As a result, the existence of a “dominant” firm in a software
category does not imply that some type of “market failure” exists that
government intervention can (and should) try to fix. But note that not all
software categories exhibit network effects. The existence of heteroge-
neous groups of customers (i.e., customers with different preferences)
can enable multiple software firms to coexist in the same category, with
different firms targeting the preferences of the different groups of cus-
tomers.

Commercial firms typically protect their intellectual property using
copyrights, patents, and trade secrets, as discussed above. For instance,
they license only binary code to make reverse engineering more difficult
for competitors, thus making it harder to copy key program features.
They take these steps to protect their opportunity to recover their fixed
investment cost or to be rewarded for the risks borne in financing soft-
ware creation and development. If a competitor could readily copy (or
enhance) the features of a successful commercial software firm’s prod-
ucts, the firm would face the possibility of short-run price competition
and long-run loss of leadership. The commercial software industry that
has thrived over the past 30 or more years would not exist as we know it
today without these types of protection for intellectual property.

1. Performance of Commercial Software

The commercial software industry has exploded since its early years.
Quality-adjusted prices have fallen markedly in nominal terms, even be-
fore adjusting for inflation. Quality-adjusted output has soared. By any
measure, the commercial software industry is succeeding in providing
ever-more powerful products that customers are willing to pay to ac-
quire. Hardware has improved enormously as well, of course. But the
hardware improvements have needed complementary software im-
provements to provide their current range of benefits to consumers. In
general, the explosive growth of the commercial software industry casts

Margolis, Winners, Losers & Microsoft: Competition and Antitrust in High Tech-
nology (rev. ed. 2001).

66. See David S. Evans & Richard Schmalensee, Some Economic Aspects of Antitrust
Analysis in Dynamically Competitive Industries, in Innovation Policy and the Economy 2
(Adam B. Jaffe et al. eds., 2002).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

332 Michigan Telecommunications and Technology Law Review [Vol. 9:313

serious doubt on any claims that a significant market failure in the indus-
try needs to be cured by government intervention.

Figure 2
Worldwide Quality-Adjusted Packaged

Software Sales, 1988–2000

0

5

10

15

20

25

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

An
nu

al
 o

ut
pu

t r
el

at
iv

e
to

 1
98

8

Sources: Paul Mason et al., IDC Report #8324, 1993 Worldwide Software Review and Forecast, Table 2,
pp. 10–16 (Dec. 1993); Evan Quinn et al., IDC Report #10460, 1995 Worldwide Software Review and
Forecast, Table 2, pp. 15–30 (Nov. 1995); Steve Garone et al., IDC Report #12408, 1996 Worldwide
Software Review and Forecast, Table 2, pp. 17–33 (Nov. 1996); Jacqueline Sweeney et al., IDC Report
#14327, 1997 Worldwide Software Review and Forecast, Table 2, pp. 30–47 (Oct. 1997); Steve McClure
et al., IDC Report #20161, 1999 Worldwide Software Review and Forecast, Table 3, pp. 36-38 (Oct.
1999); R. Paul Mason et al., IDC Report #22766, Worldwide Software Market Forecast Summary, 2000–
2004, Table 3, pp. 43-45 (Aug. 2000); Richard V. Heinman et al., IDC Report #25569, Worldwide Software
Market Forecast Summary, 2001 - 2005, Table 2, pp. 27–29 (Sept. 2001); Bureau of Economic Analysis,
and the U.S. Department of Commerce, 2001 Annual NIPA Revision, Tables 1, 11 (Aug. 2001), available
at http://www.bea.doc.gov/bea/papers/tables.pdf (last visited Feb. 7, 2003); Robert Parker & Bruce
Grimm, Recognition of Business and Government Expenditures for Software as Investment:
Methodology and Quantitative Impacts, 1959–98, Bureau of Economic Analysis and the U.S.
Department of Commerce, available at http://www.bea.doc.gov/bea/papers/software.pdf (last visited Jan.
31, 2003).

a. Output Has Boomed

Measuring “output” of the software industry is difficult, since the
quality of software has improved enormously over time. The U.S.
Bureau of Economic Analysis has constructed a price index for

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 333

prepackaged software that attempts to control for quality
improvements.67 Based on this price index and IDC’s estimates of annual
packaged software revenues, Figure 2 shows the annual quality-adjusted
output of the packaged software industry as an index relative to the level
in 1988. In 2000, quality-adjusted worldwide output was more than 20
times as large as it was 12 years earlier. Similarly, quality-adjusted
output by U.S.-based/North American software vendors increased 50-
fold from 1983 to 2000 (data not shown).68

b. Price and Performance Have Improved Markedly

The Bureau of Labor Statistics publishes a Consumer Price Index
(CPI) for “computer software and accessories” (available from Decem-
ber 1997 onward).69 This index attempts to control for changes in
software quality. From December 1997 through December 2001, the
software CPI fell by 20.5 percent while the CPI for all items rose by

67. Robert Parker & Bruce Grimm, Recognition of Business and Government Expendi-

tures for Software as Investment: Methodology and Quantitative Impacts, 1959–98, Bureau of
Economic Analysis and the U.S. Department of Commerce, http://www.bea.doc.gov/bea/
papers/software.pdf (last visited May 18, 2003). The BEA constructed this price index for
“prepackaged” software by splicing together annual percentage changes in a price index for
computer hardware, a “hedonic” price index for spreadsheets and word processors, two differ-
ent “matched model” price indices for different mixes of prepackaged software, and a
producer price index for applications software. Id. at Table 6. The BEA also publishes price
series for “custom” software and for “own-account” software. These two series are either flat
or rise steadily, unlike the dramatic decline in the series for prepackaged software. This ap-
pears to be an artifact of the methodologies used by the BEA in constructing these other price
indices. For example, the BEA assumes that there has been no quality improvement (and no
productivity improvement) in the production of “own-account” software—the price index for
that software is assumed to depend on compensation and office costs for programmers. Id. at
Table 8, pp. 16–17. And annual changes in the price index for custom software are simply a
weighted average of the annual changes in the price indices for prepackaged and own-account
software, with changes in the own-account software price index receiving a 75 percent weight.
Id. at 17.

68. IDC Report #4046, 1989 Software Review and Forecast, 6–7, 18 (Apr. 1989); Hein-
man, supra note 41, at Table 1, pp. 1–2.

69. Bureau of Labor Statistics Division, Consumer Price Index—All Urban Consumers:
Computer Software and Accessories, http://data.bls.gov/labjava/outside.jsp?survey=cu (last
visited May 6, 2003). To obtain CPI data, select the appropriate options—in this case, “U.S.
City Average” and “Computer software and accessories.”

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

334 Michigan Telecommunications and Technology Law Review [Vol. 9:313

9.5 percent.70 This means that the real price of software fell by approxi-
mately 27.4 percent over this period.71

Computer hardware and software both have improved dramatically
in terms of price relative to performance. One popular industry
benchmark for database servers shows that the fastest system in April
2001 could process 60 times as many transactions per second as the
fastest system in December 1996.72 Based on system price relative to
performance over that same time period, the most efficient system
available improved by a factor of 12.73 Much of this improvement in
performance (and price relative to performance) has been due to faster
hardware. But if the 2001 hardware had been combined with the 1996
software, the 2001 performance would have fallen far short of the
performance achieved with modern software.

c. Patents and Research and Development
Have Expanded Sharply

Inputs to and outputs from the innovative process of commercial
software development have also increased dramatically over the past 15
years. For example, in 1985, R&D expenditures by publicly traded soft-
ware companies in the United States accounted for about 1 percent of
total industrial R&D in the United States.74 By 2000, that number in-
creased to 10 percent.75 As mentioned above, patenting of software has

70. Bureau of Labor Statistics Division, Consumer Price Index—All Urban

Consumers: All Items (1997–2001), http://data.bls.gov/servlet/SurveyOutputServlet?jrunsessionid=
1043186181547150272 (last visited Jan. 21, 2003). In this case, select “All items” instead of
“Computer software and accessories.”

71. To buy the equivalent of one dollar’s worth of goods in December 1997 (“all items”)
in December 2001 would cost $1 + (9.5% × $1) = $1.095. However, to buy one December
1997 dollar’s worth of software in 2001 would cost $1 + (-20.5% × $1) = $0.795. $0.795 /
$1.095 = $0.726, so the real price of software—i.e., the price of software relative to “all
items”—fell by approximately ($1–$0.726) / $1 = 27.4 percent.

72. The Transaction Processing Performance Council (TPC) is a non-profit group that
defines database benchmarks; its members include Compaq, HP, IBM, Intel, Microsoft,
Oracle, SGI, and Sun. It administers a widely used benchmark, TPC-C, whose results are
publicly available. The benchmark measures both performance and price/performance. At
Transaction Processing Performance Council, Complete TPC-C Results List – Sorted by
HardwareVendor, Version 3 Results, http://www.tpc.org/tpcc/results/tpcc_results.asp?print
=true& OrderBy=&version=3 (last visited May 13, 2003).

73. See id.
74. Software firms are those that report their primary SIC code to be 7372 (software pub-

lishers). Standard & Poor’s Compustat®, available at http://www.compustat.com/www (last
visited May 13, 2003).

75. Software firms are those that report their primary SIC code to be 7372 (software pub-
lishers). Id.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 335

also increased substantially.76 In 1986, 829 patents were granted for
software with at least one U.S. inventor. In 2000, 7,398 patents were
granted.77 Precise links between either R&D or patents and innovation
may be difficult to trace, but the innovative process appears to be flour-
ishing.

2. Lessons from the Vertical Disintegration
of the Computer Industry

The proprietary software business owes much of its growth to fun-
damental changes in the extent to which hardware and software were
integrated.

a. Software Production in the Mainframe Era

The 1960s and 1970s were the era of expensive mainframe and
minicomputers.78 The suppliers of these computers tended to be verti-
cally integrated: they shipped their computers with operating systems,
compilers for programming languages, and other software tools. In the
1960s, applications software was essentially customized. Firms that
bought the large computers of that era generally either wrote their own
software or hired outsiders to write software for them. By the late 1960s
and early 1970s, commercial software had started to appear. In some
cases, this consisted of software that a custom programming firm had
written for one client, retained the rights to, and then licensed to other
customers.79 These products were typically expensive, although much

76. Some commentators have argued that it should not be possible to obtain patents on

software. Lessig, supra note 7, at 205–17. Lessig himself argues against patenting software.
He also cites others who have expressed skepticism about or outright scorn for software pat-
ents, including Richard Stallman and representatives from Adobe, Microsoft, and Oracle.
Even Bill Gates has expressed skepticism about software patents, saying in 1991, “If people
had understood how patents would be granted when most of today’s ideas were invented and
had taken out patents, the industry would be at a complete standstill today.” Id. at 206.

77. See Delphion Research, supra note 24.
78. See Paul Freiberger & Michael Swaine, Fire in the Valley (2d ed. 2000);

Steven Levy, Hackers (1984); Stephen Manes & Paul Andrews, Gates (1993) (discuss-
ing the state of computer hardware and software in the years just before the emergence of the
personal computer). See also The Software History Center, at http://www.softwarehistory.org
(last visited May 18, 2003).

79. In the PC era, MultiMate had a similar origin; its original developer first wrote a
look-alike of the Wang word processor for an insurance company and then marketed the soft-
ware generally. See Ken Polsson, Chronology of Events in the History of Microcomputers, at
http://web.archive.org/web/19990427035916/http://www.islandnet.com/~kpolsson/comphist/c
omp1981.htm (last updated Feb. 3, 1999).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

336 Michigan Telecommunications and Technology Law Review [Vol. 9:313

less expensive (but possibly less versatile) than custom software.80 By the
end of the 1970s, off-the-shelf software for mainframes was common-
place. For example, SPSS and SAS, programs for data handling and
statistical analysis, have been familiar to empirically minded social sci-
entists, such as the authors, since the mid-1970s.81

In the early parts of this era, when little or no commercial software
was available, substantial trading of software was fairly common; the
software was usually traded in the form of source code to make it easier
to port from one computer to another. By the 1970s, according to
Richard Stallman, substantial trading of software was unusual.82

b. Software Production in the PC Era

Mass-market software really dates from the emergence of small,
relatively inexpensive personal computers in the late 1970s and early
1980s. Someone who wrote a useful program could now hope to sell
copies to a large number of less sophisticated computer users.83 As a re-
sult, this era saw an explosion of proprietary software. In 1974, Gary
Kildall created what was probably the first commercial operating system
for personal computers, CP/M, and licensed it to many computer manu-
facturers.84 Bill Gates and Paul Allen wrote their first version of MS-
BASIC and formed Microsoft in 1975.85 Word processing programs
(such as Electric Pencil and later WordStar)86 were among the first appli-
cations programs offered for sale, coming on the market in the late
1970s. The spreadsheet category of programs was invented with VisiCalc
in 1979.87 Database programs such as dBase II came along a few years

80. One veteran of that era has described starting a firm in 1971 to sell a payroll system

and making 20–30 sales per year. Luanne Johnson, From Not-Invented-Here to Off-The-Shelf
(1997), http://www.softwarehistory.org/history/Johnson2.html (last visited May 13, 2003).

81. See SAS corporate web site, Company/, at http://sas.com/corporate/index.html (last
visited May 13, 2003); SPSS corporate web site, SPSS Inc. Corporate History, at http://
spss.com/corpinfo/history.htm (last visited May 13, 2003).

82. Richard Stallman, Address at New York University, Free Software: Freedom and Co-
operation (May 29, 2001), available at http://www.fsf.org/events/rms-nyu-2001-transcript.txt.

83. As a legal matter, software is generally “licensed” for use rather than “sold,” with the
terms of the license determining how the buyer can use the software. Much the same is true of,
for example, music CDs; someone who purchases a music CD generally does not obtain rights
to copy the CD for sale, broadcast the music, and so forth.

84. Polsson, supra note 79.
85. Freiberger, supra note 78, at 53–54 (explaining that the first version of MS-BASIC

was for the MITS Altair). See also Microsoft Museum, Microsoft Timeline, at
http://www.microsoft.com/museum/musTimeline.mspx (last visited May 13, 2003).

86. Freiberger, supra note 78, at 187, 194.
87. Id. at 289–291.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 337

later.88 While early PC users did swap software—Bill Gates raised the ire
of hackers by complaining about their pirating of MS-BASIC89—there
was no organized open-source movement, and the open-source approach
played no visible role in the early history of PC software.

The explosion of the personal computer hardware and software in-
dustries was accompanied by a major shift from the vertically integrated
approach of mainframe and minicomputer vendors in earlier years. Op-
erating systems and applications software increasingly came from firms
independent of the computer vendors. Some operating systems were still
proprietary to hardware vendors (e.g., Apple has always shipped proprie-
tary operating systems for its Apple II and Macintosh families of
computers). The most successful operating systems (first CP/M, then
MS-DOS, and later Windows), however, were licensed by software firms
to hardware vendors. The most popular development tools (such as lan-
guage compilers) came from software firms, not hardware firms. And, of
course, applications programs for personal computers have typically not
been written by integrated hardware firms. This shift away from a verti-
cally integrated approach was a marked change from the prior
mainframe/minicomputer world.

3. Summary

The commercial software industry has exploded over the last 20
years, providing a dizzying array of ever-more powerful software for use
by both technically minded users and less sophisticated users. Quality-
adjusted prices have fallen sharply. Overall firm concentration in the in-
dustry is low, and the identities of the top firms change over time.
Leaders in major software categories frequently change as well. R&D
and patent activity have risen substantially. There is no evidence that a
significant market failure exists that is amenable to fixing by government
policies toward procurement or R&D.

Part IV. The Economics of GPL
Open-Source Software

An analysis of whether governments should intervene in the market-
place to support open-source software requires an understanding of what

88. Polsson, supra note 79.
89. Freiberger, supra note 78, at 195.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

338 Michigan Telecommunications and Technology Law Review [Vol. 9:313

open source is about and of the incentives that various players may (or
may not) already have to support the development of open source.

Software developed and licensed under the GPL does share many
features with other types of open-source software, but it differs in some
regards. For example, some observers have claimed that programmers
are more inclined to donate their time to develop GPL software than
other open-source software. And commercial firms may have different
incentives for supporting the development of GPL software than for
other open-source software with fewer restrictions on commercializa-
tion.

A. Institutional Arrangements

1. Free Software Foundation is the Ideological
Heart of the Movement

The current open-source movement can trace its origins to the Free
Software Foundation (FSF), founded by Richard Stallman in 1985. The
FSF initiated a project—known as GNU90—to develop a non-proprietary
Unix-like operating system. The FSF’s efforts were based in part on the
belief that “free software is a matter of liberty.”91 According to Stallman,
“Even if GNU had no technical advantage over Unix, it would have a
social advantage, allowing users to cooperate, and an ethical advantage,
respecting the user’s freedom.”92

Stallman and the FSF began work on the building blocks for an op-
erating system in the 1980s. This effort started with development tools
such as editors (like Emacs)93 and compilers (like the GCC).94 In 1989,
the FSF came out with the first version of the GPL. The GPL was de-
signed to drive the software industry toward the “free software” model.
As one FSF document points out:

If we amass a collection of powerful GPL-covered libraries95 that
have no parallel available to proprietary software, they will pro-
vide a range of useful modules to serve as building blocks in

90. GNU stands for “GNU’s Not Unix.”
91. Free Software Foundation, The Free Software Definition, at http://www.fsf.org/

philosophy/free-sw.html (last visited May 18, 2003).
92. Richard Stallman, The GNU Project, at http://www.fsf.org/gnu/thegnuproject.html

(last visited May 13, 2003).
93. Id.
94. Id.
95. In this context, a “library” is a piece of software that is intended to provide services to

some other software; it can be considered a building block for a program.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 339

new free programs. This will be a significant advantage for fur-
ther free software development, and some projects will decide to
make software free in order to use these libraries. University
projects can easily be influenced; nowadays, as companies begin
to consider making software free, even some commercial pro-
jects can be influenced in this way.96

The GPL helps advance the FSF’s goals by forming a kind of club.
As the FSF views it, the people who develop software under its licenses
are members of a special club; anyone wanting to distribute modified
versions of the club’s software must make the source code for the modi-
fied software available (essentially without charge) to the other members
of the club:

We encourage two-way cooperation by rejecting parasites: who-
ever wishes to copy parts of our software into his program must
let us use parts of that program in our programs. Nobody is
forced to join our club, but those who wish to participate must
offer us the same cooperation they receive from us.97

2. Copyleft and the Viral Aspect of the GPL
Promote the Goals of the FSF

The GPL has been extremely important in shaping the development
and evolution of open-source software. We now turn to a more detailed
interpretation of the obligations the GPL imposes on people who use
software covered by the GPL.

The viral nature of the GPL results from the following requirement,
which is sometimes termed “copyleft”:98

You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.99

96. Richard Stallman, Why You Shouldn’t Use the Library GPL for Your Next Library, at

http://www.fsf.org/philosophy/why-not-lgpl.html (last visited May 13, 2003).
97. Richard Stallman, The GNU GPL and the American Way, at http://www.gnu.org/

philosophy/gpl-american-way.html (last visited May 13, 2003).
98. See Free Software Foundation, What Is Copyleft?, at http://www.fsf.org/copyleft/

copyleft.html (last visited May 13, 2003).
99. The GPL can affect patent and copyright rights. If a firm (or programmer) has patent

rights to modifications it makes to a GPL program, then those rights (at least as embodied in
the code in question) must be licensed without charge to others. Free Software Foundation,

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

340 Michigan Telecommunications and Technology Law Review [Vol. 9:313

The copyleft provision means that if people choose to distribute
software that is based on other software covered by the GPL, they must
distribute their new software under the GPL. GPL software thereby
propagates itself. The GPL is designed to prevent precisely what the
BSD-style licenses expressly allow: modifying a program and distribut-
ing it without making public the modified source code and without
granting others free use of the modified source code. Copyleft makes it
essentially impossible for anyone to develop proprietary commercial
software using code subject to the GPL.100

Importantly, there is some ambiguity over when “contact” with a
program licensed under the GPL infects other work. That is because the
phrases “work . . . derived from the Program”101 and “based on the Pro-
gram” are not clear. The license explicitly states that “mere aggregation
of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.”
But it also states that “derivative works” include software “containing
. . . a portion of” a program covered by the GPL.

One interpretation is that using a single line of code from a GPL
program in a new program is enough to qualify the latter as a “derivative
work,” requiring that it be licensed under the GPL.102 Proprietary pro-
grams can use or communicate with GPL programs in some limited
ways without themselves becoming subject to the viral license condition,
but the FSF recognizes that the dividing line can be murky.103

GNU General Public License, at http://www.fsf.org/copyleft/gpl.html (last visited May 13,
2003).

100. Explicit permission to develop, however, may be obtained from the copyright
holder. The program’s copyright holder might choose to release the program generally under
the GPL. At the same time, the owner could also license the program to another party on terms
other than the GPL, such as normal commercial terms. Dual-licensing does occur, but the FSF
warns the public that it rarely permits dual licensing of software whose copyright it owns. See
Free Software Foundation, Frequently Asked Questions about the GNU GPL, at http://
www.fsf.org/copyleft/gpl-faq.html (last visited May 13, 2003). See also id. at Using a certain
GNU program under the GPL does not fit our project to make proprietary software. Will you
make an exception for us? It would mean more users of that program. Dual licensing becomes
difficult, if not impossible, to arrange if a GPL program has gone through many generations
and has multiple copyright owners.

101. “Program” refers to the program being licensed under the GPL. See GNU General
Public License, supra note 99.

102. This is true even if the GPL code is in a separate module that is “linked” (a techni-
cal computer term) to, rather than included directly in, another program.

103. Free Software Foundation, Frequently Asked Questions, supra note 100. See also
id. at What is the difference between ‘mere aggregation’ and ‘combining two modules into one

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 341

The terms of the GPL apply only to the distribution of software li-
censed under the GPL, although the definition of “distribution” in this
context is unclear. An enterprise may be able to modify a GPL program
and use it internally without being legally bound to make the modified
source code available to others. On the other hand, if the same enterprise
distributed its modified GPL program to a subsidiary, the terms of the
GPL might well require it to make the source code available to all com-
ers.104

B. Production of Open-Source Software

Open-source software has primarily been developed by individuals
who donate their time to work on projects that interest them. The origi-
nal developers typically begin work on idea that they find interesting,
useful, or both. They eventually solicit support from other interested
programmers, often communicating over the Internet. Programmers, in-
cluding the original developers, may come and go during the course of
the project as they complete work and as their interests wax or wane. A
core group, often consisting of one or more of the original developers,
has the responsibility of suggesting and incorporating changes. Modified
versions of the source code are posted on the Internet and available for
free to anyone who wants to use or modify it further. Over time, users
may end up running the software with different hardware/software com-
binations than did the original developers, identifying either problems
that had originally escaped detection or worthwhile features to add.
These users can provide feedback to the developers (or become develop-
ers themselves). Through this ongoing process the software becomes
tested, debugged, and developed.

This approach differs from the commercial approach in many ways.
First, there is typically little analysis of consumer needs. Programmers
may ask themselves “what would I like my software to do?” which may
then be augmented by self-selected user feedback. Second, there is little
extensive, formal testing of the type that commercial firms often must
engage in.105 Testing is instead performed in uncontrolled environments,

program’? and If a program released under the GPL uses plug-ins, what are the requirements
for the licenses of a plug-in?.

104. Ira V. Heffan, Copyleft: Licensing Collaborative Works in the Digital Age, 49 Stan.
L. Rev. 1487 (1997); David McGowan, Legal Implications of Open-Source Software, at
http://papers.ssrn.com/paper.taf?abstract_id=243237 (last visited May 13, 2003).

105. Formal commercial internal testing might include using hundreds, perhaps thou-
sands of hardware/software configurations in a controlled manner.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

342 Michigan Telecommunications and Technology Law Review [Vol. 9:313

much like “beta” tests for commercial software developers (although
perhaps with more sophisticated users providing feedback to the devel-
opers). Third, the development of open-source software is less structured
than is the development of proprietary software. Some might consider
the lack of structure a benefit, since innovations can come from any-
where, while others might consider it a potential hindrance, since it may
prove difficult to move a project forward on a coherent basis.

C. Incentives for Participating in Open-Source Projects

The incentives for writing open-source software differ from those for
proprietary software. Understanding these incentives is important in or-
der to make conjectures about the evolution of open source. There are
two major economic possibilities: individuals choose to develop open-
source software, essentially in their spare time; or firms pay program-
mers to develop open-source software. A non-economic possibility is
that governments or universities choose to fund the development of
open-source software; that is a policy issue that we discuss below.

1. Why Individuals Work on Open-Source Software

Why programmers donate time to open-source software projects is a
subject that has generated considerable discussion.106 Open-source advo-
cates have suggested several motives, four of which involve non-
financial rewards:

• It is fun. Since a programmer is free to pick and choose
among open-source projects, he need only work on matters
of interest.

• It is prestigious. Success at open-source development rates
highly among those whose opinions the programmers most
value—other programmers.

106. See, e.g., Josh Lerner & Jean Tirole, Some Simple Economics of Open Source Soft-

ware, 50 J. Indus. Econ. 197, 197–234 (2000); Justin Pappas Johnson, Some Economics of
Open Source Software (Dec. 11, 2000) (unpublished paper presented at 2001 IDEA Toulouse
conference), available at http://www.idei.asso.fr/Commun/Conferences/Internet/Janvier2001/
Papiers/Johnson.pdf (last visited May 18, 2003); Eric Raymond, The Magic Cauldron, in
The Cathedral and the Bazaar (2001), available at http://catb.org/~esr/writings/
cathedral-bazaar/magic-cauldron/ (last visited May 18, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 343

• It “scratches an itch.”107 Programmers attack problems that
they personally face108 or because they are intrigued by the
intellectual challenge.

• It meets an ideological urge—the desire for free software
and concern over Microsoft’s “domination” of software.109

The “scratches an itch” motive has been considered by some ana-
lysts as leading to something like a cooperative of users. A number of
developers pool their talents to develop software they all consider poten-
tially useful. With this type of motivation, the GPL has sometimes been
considered beneficial as an enforcement mechanism: due to “copyleft,” it
ensures that no one can take the collective intellectual property, add
some private intellectual property, and treat the whole as a private good.

Open-source advocates like Eric Raymond generally dismiss the
possibility that financial rewards are the motivations,110 although Ray-
mond does acknowledge “it can get you a better job offer, or a consulting
contract, or a book deal.”111 This is similar to the signaling incentive that
Lerner and Tirole explore.112 But according to Raymond, this sort of op-
portunity “is at best rare and marginal for most hackers.”113

107. “Every good work of software starts by scratching a developer’s personal itch.”

Eric Raymond, The Cathedral and the Bazaar, in The Cathedral and the Bazaar 23
(2001), available at http://catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ (last vis-
ited May 18, 2003).

108. Of course, not all possible motivations apply in all circumstances. For example,
considering the amount of effort that Linus Torvalds and others have devoted to developing
Linux, it would have been much more efficient for them to have purchased commercial copies
of Unix.

109. To gain an understanding of how some members of the open source community feel
towards Microsoft, visit http://slashdot.org/, which regularly has anti-Microsoft posts, or read
the “TalkBack” comments on articles about Microsoft posted at http://www.zdnet.com/.

110. Eric Raymond is sometimes considered the resident anthropologist of the open-
source movement. See An Interview with Eric Raymond, at http://opensource.oreilly.com/
news/raymond_0101.html (Jan. 24, 2001). He has written extensively on subjects related to
open source, such as the advantages he perceives from open-source development and the mo-
tivations that programmers have to write open-source software. For links to Raymond’s
writings, see http://catb.org/~esr/writings/(last modified Nov. 23, 2002). For Raymond’s
commentary on some internal Microsoft documents about open source (the “Halloween
Documents”), see http://www.opensource.org/halloween/ (last visited Feb. 5, 2003).

111. Eric Raymond, Homesteading the Noosphere, in The Cathedral and the Ba-
zaar 79 (2001), available at http://catb.org/~esr/writings/cathedral-bazaar/homesteading/
(last visited May 18, 2003).

112. Lerner, supra note 106.
113. Raymond, supra note 111.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

344 Michigan Telecommunications and Technology Law Review [Vol. 9:313

2. Business Models Based on Open Source

Unpaid volunteers are not the only possible source of labor for open
source. Businesses may have incentives to “donate” labor to the devel-
opment of open source, and in fact several have done so to some extent;
these are discussed below. These incentives depend on the extent to
which funding an open-source software project stimulates the demand
for other products or services sold by the firm.

The circumstances under which a for-profit firm has incentives to
invest in open source, particularly under the GPL, may be limited.
Consider two otherwise identical firms, where the first invests in
developing open-source software and the second does not. Whatever
open-source improvements the first firm develops (at least under the
GPL) must be made quickly available to the second firm. So unless the
process of open-source development creates parallel commercial
opportunities, the first firm will necessarily have higher costs than the
second. To put it another way, the first firm can expect to succeed only if
open-source investments give it credibility unavailable to the second
firm, a shorter lead time in developing commercial products or services,
lower costs for the other products and services, or some other benefit
that more than offsets the cost of devoting resources to open-source
software.

Published articles on commercial firms and open-source software
sometimes confuse the issues of using versus developing open source.114
Any number of firms can have incentives to use open-source software.
For example, a firm deciding what Web hosting software to use might
well consider the Apache Web server (open source but not GPL) as well
as server software from Sun, Microsoft, and many other firms. Decisions
about software use would normally be based on standard commercial
considerations: features, stability, speed, ease of use, other characteris-
tics, and price. For some firms and some software, the ability to modify
the source code might be perceived as yet another useful characteristic.
For other firms and other software, the availability of the source code
would provide few, if any, benefits.

The issues are much different, however, when it comes to incentives
for firms to develop open-source software, particularly GPL software.

114. For example, “With a column called The Open Source, not a week goes by without

someone asking me how anyone makes money when they give away the source code for their
programs. . . . Using open source to make money is a no-brainer.” Nicholas Petreley, Open-
Source Economics, InfoWorld, Aug. 24, 2001, at http://archive.infoworld.com/articles/
op/xml/01/08/27/010827oppetreley.xml.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 345

Here we consider three major ways in which firms may find that devel-
oping open-source software helps them sell complements: proprietary
software, hardware, and services.

Although some open source advocates have been bullish about the
potential for firms to build profitable businesses around the development
of open source, others are more skeptical (and the more purely ideologi-
cally motivated simply do not care). For example, Bruce Perens, primary
author of “The Open Source Definition,”115 recently stated:

[Michael Robertson of Lindows.com] also commented about the
lack of successful Linux companies. This is not due to the com-
munity treatment of Linux businesses, but the fact that Open
Source is not a business and should not be treated as one. It’s
successful when operated as a cost-center, in businesses that
make their money some other way. The most successful ones use
the software they develop for some business purpose: for exam-
ple, Apache developers use the software to implement web sites
for their business, IBM and HP make money by selling hardware
that runs with Linux, not by selling Linux. Eric Raymond and
others theorized that support would be a good way to fund Open
Source, but the support model has under-performed so far, be-
cause the early adopters are too self-supporting. Sales of
proprietary software to support the Open Source development
are also underperforming, as Linux customers, even within the
Fortune 500, have become wary of dependence on non-Open-
Source. Thus, no Linux distribution has been more than margin-
ally profitable so far. My surmise is that over the long term a
non-profit like Debian supported by hardware manufacturers and
other businesses will work best.116

We now examine some of the business models that Eric Raymond
has identified as possible ways that for-profit firms can try to make
money by developing open-source software.117 For each of these business
models, we identify firms that appear to have tried to use them; we also
assess the degree to which they have succeeded or failed.

115. Bruce Perens, The Open Source Definition: Version 1.9, at http://

www.opensource.org/docs/definition.html (last visited May 18, 2003).
116. Bruce Perens, Open Letter to Michael Robertson, at http://www.lwn.net/daily/

perens-robertson.php3 (Apr. 13, 2002).
117. Eric Raymond, The Magic Cauldron: Indirect Sale-Value Models, in The Cathe-

dral and the Bazaar 136 (2001), available at http://www.catb.org/~esr/writings/magic-
cauldron/magic-cauldron.html (last visited May 6, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

346 Michigan Telecommunications and Technology Law Review [Vol. 9:313

a. Sell Complementary Software

Under this approach, businesses use open-source software to help
promote proprietary software, subscriptions, or advertising revenue from
a Web portal site (such as www.msn.com, www.netcenter.com, or
www.yahoo.com).118 For example, a business could promote open-source
client software for desktops or laptops to help sell proprietary server
software or to drive traffic to a portal site. “Complementary” software
might be a specialized version of the open-source software or proprietary
software that works in conjunction with the open-source software. For
the complementary software strategy to work, the complementary com-
mercial product’s profits must be sufficient to compensate for the cost
and risk of the investment in the open-source project.

Given the ideological issues surrounding the GPL, there is a tension
inherent in this business model: how can a firm that wants to market
proprietary software support the GPL, which is designed to drive
proprietary software out of use? But some firms do support the
development of GPL software in conjunction with their own proprietary
software. In addition to IBM, discussed below under hardware vendors,
the most public of the firms involved in developing GPL software have
included Corel, Ximian, theKompany.com, and MySQL.119

Corel came out with its own Linux distribution and developed instal-
lation and other tools to make it easy to install. It also aided the WINE
project120 while adapting (or “porting”) its proprietary WordPerfect Suite
to run on Linux. Corel has since shed its Linux work and has discontin-
ued development of the Linux version of its office suite.121 As Perens

118. Id.
119. Some firms have supported the development of non-GPL open-source software,

typically attempting to license an enhanced version of the software under proprietary terms—
for example, Sendmail, Inc. See Sendmail, Company Overview, http://store.sendmail.com/cgi-
bin/smistore/company.jsp?BV_UseBVCookie=Yes&filepath=overview/index.shtml&heading=
Company%20Overview (last visited May 6, 2003).

120. The WINE project is an attempt to clone the Windows APIs so that applications de-
signed for Windows will run on Unix-like operating systems. The WINE project was
originally licensed with a BSD-style license, but it recently switched to the LGPL (the Lesser
General Public License), another license that is promoted by the FSF, but not as enthusiasti-
cally because it is not as restrictive as the GPL. Jeff Tranter, Frequently Asked Questions
About Wine and Corel, at http://linux.corel.com/support/wine_faq.htm (on file with author);
Alexandre Julliard, Conclusions, at http://www.winehq.com/hypermail/wine-license/2002/
03/0029.html (Mar. 4, 2002); Stallman, supra note 96.

121. The latest version of its office suite for Linux is WordPerfect Office 2000; the latest
version for Windows is WordPerfect Office 2002. Corel Corp., Products, at http://
linux.corel.com/products (on file with author); Corel Corp., WordPerfect Office 2002 Stan-
dard, at http://www3.corel.com/cgi-bin/gx.cgi/AppLogic+FTContentServer?GXHC_GX_

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 347

explained, it seems Corel was unable to make money by selling Linux; it
did no better in trying to sell WordPerfect for Linux. Thus, this effort
must be tagged as a failure.

Ximian has developed a GPL program called Evolution that runs on
Linux;122 it has also been a major contributor to other open source pro-
jects like GNOME, a GPL “desktop” user interface for Linux and other
Unix-like operating systems. Evolution mimics the operation of Micro-
soft Outlook, which provides e-mail and other capabilities. Ximian
offers a proprietary program that allows Evolution to work with Micro-
soft’s e-mail server, thereby gaining the same types of capabilities on
Linux that are available to users of Outlook.123 This product is too new to
evaluate as a success or failure.

theKompany.com has also developed both GPL and proprietary
products. For example, it developed a specialized graphics program,
Kivio (which has capabilities similar to Microsoft’s Visio).124 Kivio ships
under the GPL as part of the KOffice suite for the KDE desktop for
Unix-like operating systems. The firm has announced two ways it hopes
to make money from this: offering proprietary add-ons to this program;
and (soon) offering an enhanced version of the program that runs not
only with KDE but also with Windows.125 The firm also has announced,
however, that it will not use the GPL for future products because of the
lack of profits.126 Its use of the GPL should therefore be classified as a
long-run failure.

MySQL AB is a firm whose major product, a database, is licensed
(primarily) under the GPL.127 In part, MySQL earns revenues by
providing support services to its database users (services that, in

jst=5a964475662d6165&GXHC_gx_session_id_FutureTenseContentServer=355c17803d3e05
4a&pagename=Corel/Product/Highlight&id=CC1MSNDMYJC&highlight=requirements (on
file with author); Press Release, Xandros Announces Strategic Licensing Agreement with
Corel Corporation, (Aug. 29, 2001), available at http://www.xandros.net/release1.html (last
visited May 18, 2003).

122. Ximian, Inc., Ximian Evolution 1.2, at http://www.ximian.com/products/evolution/
(last visited May 18, 2003).

123. Ximian, Inc., Ximian Connector for Microsoft Exchange, at http://
www.ximian.com/products/connector/faq.html (last visited May 18, 2003).

124. TheKompany.com, Kivio mp, at http://www.thekompany.com/products/kivio/ (last
visited May 18, 2003).

125. Id.
126. Shawn Gordon, Running a Corporation in an Open-Source World, at http://

www.linuxandmain.com/essay/sgordon.html (Mar. 18, 2002).
127. Earlier versions of MySQL were released under an even more restrictive license

than the GPL. MySQL AB, MySQL Free Public License Version 4, Mar. 5, 1995, at
http://www.mysql.com/support/arrangements/mypl.html (last visited May 13, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

348 Michigan Telecommunications and Technology Law Review [Vol. 9:313

principle, could be provided by any third party who sufficiently studied
the product). But MySQL also earns revenues by licensing its flagship
product (i.e., exactly the same program that it licenses under the GPL) to
firms that want to combine their software with MySQL’s in ways that
would not be permitted under the GPL. MySQL can follow such a mixed
licensing strategy because it owns the copyright on its software. To date,
MySQL appears to be successful.128

b. Sell Complementary Hardware

Investing in open-source software could increase the demand for
hardware or cut the costs of producing complementary software that is
bundled with the hardware. IBM is perhaps the most public “success”
story for a hardware firm supporting the development of open-source
software. Some, but not all, of the software, is under the GPL.129 IBM
claims to have invested $1 billion (including marketing expenditures) for
a variety of open-source initiatives, including adapting Linux (GPL) and
Apache (not GPL) to IBM’s various computer hardware platforms.130
IBM’s hardware business is unusual because it markets several funda-
mentally different types of servers with mutually incompatible operating
systems.131 Linux permits IBM to unify its server product line, so that
proprietary IBM software (and other software) can be used on all the
different servers. IBM is also unusual for a hardware company because it

128. Press Release, MySQL AB, Record Sales, New Financing Fuel Growth at MySQL

(Apr. 22, 2002), at http://www.mysql.com/news/article-96.html. A similar dual licensing strat-
egy is followed on a lesser scale by the author of an advanced file system for Linux. “This
project is GPL’d, but I sell exceptions to the GPL to commercial OS vendors and file server
vendors. It is not usable to them without such exceptions…” Hans Reiser, ReiserFS v.3 White-
paper, at http://forum.divdata.net/Centera/Documents/Centera/ReiserFS.pdf (last visited May
18, 2003).

129. For example, IBM released source code to its Andrew File System under the IBM
Public License and released source code to its Journaled File System for Linux under the
GPL. IBM, Open AFS Overview, at http://www-124.ibm.com/developerworks/oss/afs/
info.html (last visited May 18, 2003); IBM, Journaled File System Technology for Linux, at
http://www-124.ibm.com/developerworks/oss/jfs/index.html (last visited May 18, 2003).

130. James Evans, IBM to invest almost $1 billion in Linux development, InfoWorld,
Dec. 12, 2000, available at http://archive.infoworld.com/articles/hn/xml/00/12/12/
001212hnibmlin.xml.

131. IBM’s server types include: mainframes running zOS, midrange servers running
OS/400, RISC processor-based Unix servers running AIX, and Intel processor-based servers
running Windows. See IBM, IBM E-server, at http://www-132.ibm.com/content/home/
store_IBMPublicUSA/en_US/eServer/eServer.html (last visited May 6, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 349

is also one of the world’s largest software vendors.132 IBM uses Linux
(and other open-source software) to help promote sales of both its hard-
ware and proprietary software. We are aware of no other firms in a
situation like IBM’s.

Intel has supported work on Linux, in part through the provision of
hardware and other resources to developers. Intel has a clear interest in
wanting high-quality operating systems that run well on computers pow-
ered by its processors. To encourage the development of software that
takes full advantage of its processors, Intel provides a variety of soft-
ware, including system libraries, test suites, programming tools, and
experimental code.133 We know of no other major hardware vendors that
have publicly announced major initiatives to encourage the development
of open-source software, although some hardware vendors, such as Hew-
lett Packard, have developed Linux drivers for their hardware.134 In
addition, Hewlett Packard has recently supported the development of
open source kernel extensions such as openMosix for the IA64 micro-
processor family.135 And Hewlett Packard also “sponsors” or is a member
of a variety of open source organizations.136 Some other vendors have
announced support for open source in more modest ways.137

There are some conflicts between the goals of profit-oriented hard-
ware companies and the open-source movement. Hardware companies
want to differentiate themselves from each other, and software is one

132. Its more popular server-based products include DB2 (a database) and Domino (the

server component of its Notes communications/groupware product); both products are avail-
able for Linux. See IBM, DB2 for Linux, at http://www-3.ibm.com/software/data/db2/linux/
(last visited May 13, 2003); IBM, Lotus Domino, at http://www.lotus.com/home.nsf/
welcome/domino (last visited May 13, 2003).

133. See Intel, Open Source from Intel, at http://developer.intel.com/software/products/
opensource/ (last visited May 18, 2003).

134. Hardware vendors are sometimes reluctant to develop open-source drivers, because
doing so can make it easier for competitors to improve their own drivers.

135. Moshe Bar, Porting Linux to the IA64 Platform, Byte.com, May 13, 2002, at
http://www.byte.com/documents/s=7182/byt1021067742738/0513_moshe.html (last visited
May 7, 2003).

136. HP U.S., hp and open source, at http://www.opensource.hp.com/ (last visited May
7, 2003).

137. For example, in August 2000 companies including Compaq HP, IBM, and Sun “an-
nounced their support” for the GNOME Foundation, which develops the GNOME graphical
desktop. See GNOME Foundation Press Releases, The GNOME and Linux Communities and
Industry Leaders Join to Create the GNOME Foundation (Aug. 15, 2000), http://
www.gnome.org/pr-foundation.html. Sun has continued to work with the GNOME Founda-
tion, and recently contributed to GNOME’s Accessibility Framework. See GNOME
Foundation Press Releases, Making GNOME Accessible—Opening New Doors at the Work-
place for Users with Disabilities (Aug. 28, 2001), http://www.gnome.org/pr-accessible.html.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

350 Michigan Telecommunications and Technology Law Review [Vol. 9:313

dimension on which they have tried to do that. The “Unix wars” of the
1980s are a good example; competing hardware vendors (IBM, Sun,
SGI, Digital, Hewlett-Packard, and others) offered proprietary, and de-
liberately incompatible, versions of Unix to differentiate their products.
Open-source advocates, and especially those responsible for Linux, want
to prevent open-source code from “forking” into mutually incompatible
versions like Unix. But a standard version of Linux might result in prob-
lems for hardware companies. It might reduce barriers to entry into the
manufacturing of high-end computers, much as the widespread use of a
proprietary standard (MS-DOS and then Windows) reduced barriers to
entry into personal computers. That would hurt IBM and either reduce
IBM’s incentives to invest in Linux or encourage IBM to figure out ways
to differentiate the flavor of Linux that ran on its machines.

c. Sell Complementary Services

Firms can attempt to make money from developing open-source
software by selling associated services. Although a firm would not
necessarily need to invest in writing open source code, by doing so it
may obtain specialized knowledge about open source that could be
helpful in providing better services. Or, it might obtain credibility about
open source that would improve its ability to market its services. Several
companies have followed this approach to various degrees. Cygnus
Solutions was heavily involved in developing and maintaining the open-
source GNU compilers. It sold support for these products, and it
contracted with hardware firms to develop versions of the compilers for
new chips. Cygnus’s familiarity with these compilers may have given it a
cost advantage over other firms in doing so. Cygnus Solutions was
purchased by Red Hat, a Linux distribution company, in 1999.138

Red Hat and other Linux distributors arguably sell a service, namely
“the value added by assembling and testing a running operating system
that is warranted (if only implicitly) to be merchantable and to be plug-
compatible with other operating systems carrying the same brand.”139
However, there appear to be few barriers to entry to such a business; with
low entry barriers, it is difficult both to make a profit and to fund the
development of Linux or other open-source products. This is particularly
true when other firms can (and do) copy what (for example) Red Hat

138. See Red Hat Network, Red Hat to Acquire Cygnus and Create Global Open Source

Powerhouse (Nov. 15, 1999), http://www.redhat.com/about/presscenter/cygnus_1999/redhat-
cygnus111599.html.

139. Raymond, supra note 117, at 113, 137.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 351

chooses to distribute,140 thus severely limiting what Red Hat can charge
for its distribution. Several Linux distributions have reported rocky
financial results within the last year, and even Red Hat cannot be
considered a resounding financial success.141

Several firms that support open source announced plans to offer
automatic software updating services in connection with their open-
source work: Red Hat, Eazel, Caldera, and Ximian. Red Hat and Ximian
were mentioned above.142 Eazel, which developed a file management tool
under the GPL, no longer exists.143 Caldera, a Linux vendor that is not
entirely happy with the GPL and sells proprietary software as well as
Linux, offers a similar service.144 Entry into an industry like this does not
seem particularly difficult, again making it difficult to both cover costs
and fund open-source development.

D. The Performance of Open Source

Open-source production methods have created several software
products that are widely used in their relevant categories. After reviewing
these successes, we summarize the status of open-source projects under
development. An understanding of where and why open source has

140. A review of one Linux distribution, Mandrake 8.0, reported that potential users

could download the product for free, purchase the product for $69.95 from Mandrake, or pur-
chase a CD with the product from another party for $4.95. See Daniel Christie, Linux
Mandrake 8.0, http://www.thedukeofurl.org/reviews/misc/mandrake80/printable.shtml (on file
with author).

141. See, e.g., Mandrake Linux, Mandrake Linux Users Club Answers, at http://
www.mandrakelinux.com/en/club/club-answers.php3 (Apr. 4, 2002); Stephen Shankland,
SuSE Linux Gets New CEO, Cuts Staff, CNET News.com, Jul. 23, 2001, at
http://news.com.com/2102-1001-270372.html (last visited May 18, 2003). Red Hat projected
that it would lose $140 million over fiscal year 2002 on $79 million in total revenue. See Red
Hat, Inc. Consolidated Statements of Operations—FY2002, http://media.corporate-ir.net/
media_files/NSD/RHAT/reports/GAAP_Statement_Ops_FY2002.pdf (Dec. 31, 2001).

142. See Red Hat Network, Overview of Services, at https://rhn.redhat.com/feature_
comparison.pxt (last visited Apr. 5, 2001); Ximian, Ximian Red Carpet: Automated Software
Maintenance and Version Management, at http://www.ximian.com/products/ximian_red_
carpet/ (last visited May 18, 2003).

143. Peter Galli, Linux Specialist Eazel Calls It Quits, at http://www.zdnet.com/
eweek/stories/general/0,11011,2761184,00.html (May 15, 2001); Linux Today, Eazel’s De-
mise Is Official, at http://linuxtoday.com/mailprint.php3?action=pv& ltsn=2001-05-16-004-
20-NW-GN (May 15, 2001).

144. See Mary Jo Foley, Caldera CEO: MS right to shun open source, CNETAsia, May
10, 2001, at http://asia.cnet.com/newstech/systems/0,39001152,2120279,00.htm (last visited
Jan. 20, 2003); SCO, Caldera Volution Online, at http://www.caldera.com/products/
volutiononline/ (last visited May 18, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

352 Michigan Telecommunications and Technology Law Review [Vol. 9:313

succeeded and failed is needed to evaluate policies designed to promote
open source.

1. Successes and Failures of Open-Source Software

It is useful to divide the successes into those distributed under the
GPL and those under BSD-style licenses.

a. GPL Successes

The MySQL database and Samba, software that lets servers running
Linux and other Unix-like operating systems emulate Windows servers,
have been widely praised.145 Linux, however, is probably the most
famous GPL software. Linux is an operating system widely popular on
server computers but, at least relatively, much less so on client
computers.146 “Clustering” software for Linux, creating relatively
inexpensive “supercomputers,” might also be judged a success.147 The
development tools from the GNU project (such as the Emacs editor and
the GCC compilers) probably are not as widely used as many
commercial development tools, but they are widely used by open-source
developers.

The GNOME and KDE desktops for Linux and other Unix-like op-
erating systems should probably be considered qualified successes. They
provide graphical user interfaces for these operating systems. Although
the interfaces are somewhat like those for Windows and the Macintosh,
they are not yet as user-friendly. These desktops are not widely used be-
cause of Linux’s relative lack of success on client computers, but they
may have promise if they and Linux continue to improve for use by non-
technical users.

145. See MySQL AB Press Release, Leading European VCs Invest in MySQL AB

(Nov. 12, 2001), at http://www.mysql.com/news/article-84.html; Michael Vizard & Steve
Gillmor, CEO of MySQL explains why open-source may be right approach for many enter-
prises, InfoWorld, Dec. 20, 2001, at http://archive.infoworld.com/articles/hn/xml/01/
12/20/011220hnmickos.xml; Samba has been praised on various occasions and was being
used by thousands of users in mid-1997; its current number of users is surely much higher.
Samba, Samba Survey March ‘96, http://www.samba.org/samba/survey/ (May 5, 1997);
eWeek, i3 Awards Finalist, http://www.eweek.com/print_article/0,3668,a=26153,00.asp (Apr.
29, 2002).

146. In absolute numbers, Linux is used on more clients than servers. In 2001, the in-
stalled base of Linux was estimated to be about 6.6 million units on clients and 4.0 million
units on servers. Al Gillen, IDC Report #26952, Worldwide Linux Operating Environments
Forecast, 2002–2006: Client Shipments Pick Up the Pace, Table 4, p. 8 (Feb. 2002).

147. Rick Cook, Supercomputers on the Cheap, LinuxWorld, Apr. 13, 2000, at
http://www.cnn.com/2000/TECH/computing/04/13/cheap.super.idg/.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 353

b. BSD-Style Successes

The list of famous successes under BSD-style licenses seems longer
than those under the GPL. The BSD family of Unix operating systems
has a long history—the first computers from Sun were based on it, as
were many others. The most popular open source versions of BSD Unix
that are currently available (FreeBSD, OpenBSD, and NetBSD) do not
seem to be as popular as Linux, with one partial exception: Apple’s latest
operating system (Mac OS X) is based on a version of FreeBSD.148 Ap-
ple’s user interface is not open source, but the BSD Unix that underlies it
is open source.149 Two other key pieces of software emerged from work
done at Berkeley roughly two decades ago: BIND and Sendmail.150 Cur-
rent versions of BIND are widely used on servers for resolving Internet
addresses, converting Web addresses (like www.nera.com) to IP ad-
dresses (like 64.23.37.68).151 Sendmail was the first modern e-mail server
software and is still widely used.152

Other widely-used open-source projects also have BSD-style li-
censes. Three such pieces of software are Apache, Xfree86, and Perl.
Apache, described previously, is perhaps the most widely used Web
server software.153 Xfree86 is an implementation of a windowing system
for Linux and other Unix-like operating systems for Intel-compatible
computers. Xfree86 seems to be included with essentially all Linux dis-
tributions and is usable on both clients and servers. Perl is a scripting
language widely used on servers and on clients by developers.154

148. See Mac, Mac OS X System Architecture, at http://developer.apple.com/macosx/

architecture/index.html (last visited May 18, 2003).
149. Id.
150. Nominum, BIND (Berkeley Internet Name Domain) (2001) (on file with author);

Red Hat Sendmail HOWTO: 1.2 History, http://www.redhat.com/support/resources/howto/RH-
sendmail-HOWTO/x29.html (last visited May 6, 2003).

151. See Internet Software Consortium, ISC BIND, at http://www.isc.org/products/
BIND/ (last visited Jan. 20, 2003).

152. Sendmail, Company Overview, at http://store.sendmail.com/cgi-bin/smistore/
company.jsp?BV_UseBVCookie=Yes&filepath=overview/index.shtml&heading
=Company%20Overview (last visited May 18, 2003).

153. Apache, HTTP Server Project, at http://httpd.apache.org/ (last visited May 6, 2003).
154. Unlike many programming languages, a “scripting language” is not normally com-

piled. It is often used to manipulate files on a computer, not to develop major programs such
as a word processor.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

354 Michigan Telecommunications and Technology Law Review [Vol. 9:313

c. Some Failures155

In general, open source has not been successful in developing user-
friendly software aimed at mass-market users. Office suites have gener-
ally not succeeded. This may change since new suites are under
development in conjunction with both the KDE and GNOME desktops,
but neither can yet be considered a success.156 The best of the existing
open-source office suites is probably OpenOffice.157 OpenOffice is based
on the source code for StarOffice, a proprietary product acquired by Sun.
StarOffice’s use was too tiny for market research firms to measure when
Sun acquired its developer.158 Games are a large software category for
PCs and game consoles, but we are unaware of any commercial-quality
games developed under the GPL.

2. Open-Source Projects under Development

A large number of open-source projects are currently under devel-
opment. Most of these projects seem to rely on the GPL rather than
licenses with fewer commercialization restrictions. SourceForge is a Web
site that provides free hosting services to open-source projects.159 In early
May 2002, 38,610 projects were hosted on SourceForge.160 Of these,

155. “Failures” is defined as failures for open source as a whole, not individual product

failures.
156. GNOME Office is a different kind of office “suite.” Rather than consist of a specific

set of applications, it considers itself to include any GPL applications that use a common
component architecture (for linking files) and a common set of programming libraries. See
GNOME Office, at http://www.gnome.org/gnome-office/index.shtml (Jan. 23, 2003).

157. A recent review in the Washington Post states, “After using the Windows version
of OpenOffice for the past week and a half, I can attest that it either matches or beats Micro-
soft Office in features and ease of use, at the cost of slower performance on older computers
and the occasional slight garbling of complicated Microsoft Office documents. It’s hardly
perfect, but somebody in Redmond ought to be worried about this program.” Rob Pegoraro,
The Office Suite that Lets You See Past Redmond, Wash. Post, May 12, 2002, at H07, avail-
able at http://www.washingtonpost.com/ac2/wp-dyn/A4246-2002May11?language=printer.

158. After Sun acquired the developer of StarOffice, it made the product available for
free and made the source code available to what became the OpenOffice project. Sun has
announced that it will begin charging for the next version of StarOffice, but OpenOffice re-
mains an open-source project. Sun Microsystems Press Release, Sun Expands StarOffice
Software Offering (Mar. 19, 2002), at http://www.sun.com/smi/Press/sunflash/2002-
03/sunflash.20020319.1.html (last visited May 18, 2003).

159. See Sourceforge, supra note 35.
160. Around May 6, 2002, researchers under our direction executed a computer program

that automatically downloaded 38,610 Web pages from the SourceForge site. Our researchers
then automatically extracted from those Web pages a variety of information about the 38,610
projects hosted by SourceForge and stored that information in a database. The information
presented in this paragraph and the next was obtained from queries against that database.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 355

25,194 projects provided information on the licenses used (some projects
use multiple licenses). Of these, 18,133 used the GPL at least in part,
and 20,220 used either the GPL or the LGPL (the Lesser General Public
License), a cousin to the GPL, also favored by the FSF for some pur-
poses.161 The GPL therefore accounts for 47 percent of the projects
hosted at SourceForge and 72 percent of the projects with a known li-
cense type. Combined, the GPL and LGPL account for 80 percent of the
projects with a known license type.

SourceForge provides other useful information (at least for projects
hosted at that site) on the types of open-source projects currently under
development and who the intended audiences are for these projects. Of
the 25,852 projects whose development status is known, only 4,712
(18 percent) had reached either the “production” or the “mature”
stages.162 The rest were in various planning or development stages. The
number of projects with information on “intended audience” came to
25,402; of these, only 56 percent163 included “end users/desktop” among
the intended audience (again, projects could have multiple intended au-
diences). In contrast, 75 percent had developers or system administrators
among the intended audience.164

Only tentative conclusions can be drawn from these numbers. It
seems clear, however, that GPL is by far the most popular license among
currently active open-source projects. It also seems clear that end users
are not the main audience of open-source developers since developers or
system administrators were more often the intended audience.

E. Summary

Open-source software has succeeded in only some areas. The lack of
property rights in open-source software means that, except in special
circumstances, firms have little or no incentive to devote substantial
resources to the development of open source. Firms that concentrate on
the distribution of open-source software (such as Red Hat and other
Linux distributors) are in an industry with essentially free entry, so they
can charge little more than their distribution costs for their distribution

161. Overall, however, the FSF prefers that developers use the GPL for their programs.

See Stallman, supra note 96.
162. Projects could be in multiple stages, such as a “production” stage for one version

and a “beta” stage for another. These figures count a project as in the “production” or “ma-
ture” stages if either of those stages had been reached by the project.

163. The exact number is 14,183.
164. The exact number is 19,164.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

356 Michigan Telecommunications and Technology Law Review [Vol. 9:313

services; “buying” more software from them is likely to have little or no
effect on the supply of programmers to develop open-source software.

Part V. Comparisons of Proprietary and
Open-Source Software

Some government policy proposals have been based on claimed
advantages of open-source software over proprietary software. We
compare open-source and proprietary software in two ways in this
section. Section A examines the advantages and disadvantages of both
approaches. Section B examines an oft-made claim that the open-source
approach results in more innovation. Section C considers the evolution
of open-source and proprietary software under government neutrality.

A. Advantages and Disadvantages of Each Approach

The relative advantages and disadvantages of open-source and pro-
prietary software are, of course, mirror images: what is an advantage for
open source is a disadvantage for proprietary software; what is an advan-
tage of proprietary software is disadvantage for open source.

1. Open Source

a. Advantages

Open-source software in general, and GPL software to some extent,
has several strengths. One involves the use (as opposed to the creation)
of intellectual property. Intellectual property may be expensive or diffi-
cult to create, but, once created, the marginal cost of using it is zero. As a
result, society benefits most from an already-created piece of intellectual
property when it is made available to all for free. Open source more or
less does this, with the GPL being less attractive than other open-source
licenses to commercial firms in this regard. Using code licensed under
the GPL can impose restrictions that using code available under other
licenses do not; namely, the inability to mix that program code with pro-
prietary program code.

The availability of source code for open-source programs means that
technically adept users can tailor the software to their particular needs.
They can also fix bugs and provide those fixes to other users. These ad-
vantages will appeal more to business users than to typical home users,
of course, since medium and large businesses are likely to have techni-
cally adept staff to maintain their networks and corporate software.

Since technically adept users can inspect the source code if they so
desire, it is possible that they might be able to create bug fixes more

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 357

quickly than occurs with proprietary software; whether such bug fixes
can easily be put into the hands of general users is less clear.

At least in theory, open source may be more protective of “privacy”
than proprietary software. With open source, it would be difficult for a
programmer to include code that would “spy” on unsuspecting users be-
cause other programmers could simply remove such code. Whether this
theoretical advantage is a real-world advantage is not clear, since there is
little evidence that commercial software engages in such behavior.165

b. Disadvantages

Because the source code is open to all, open-source developers have
limited opportunities to earn a pecuniary return on the time and effort
invested in their work. As discussed above, non-pecuniary rewards can
certainly provide some motivation, but they do not appear any more im-
portant in software development than in other fields. The limited
pecuniary rewards available to open-source developers will tend to limit
the supply of effort devoted to these activities.

Firms likewise have limited opportunities to earn pecuniary rewards
for their investments in open-source projects. As a result, they have lim-
ited incentives to perform the types of often costly consumer research
into usability and consumer needs that proprietary developers do in order
to market to mass-market consumers; they have no easy way to earn a
return on any such investments. As the SourceForge data suggest,166
open-source projects are more often aimed at technical users, which
sidesteps the usability issues. Similarly, the development process pro-
vides few incentives to identify and eliminate issues that might be
problems for the less technically inclined. A government mandate that
government employees (or citizens) use open source will force people to
use software that is, on average, hard for them to use.

Open source is also subject to “fragmentation” (i.e. the creation of
multiple incompatible versions of the same software). Different Linux
distributions, for example, have taken different approaches to organizing
where operating system and other files are stored. This makes it difficult
for developers of applications for Linux to develop installation routines:
a routine that works for one Linux distribution will not work on

165. See Part VI.C.1.b for a discussion on security and privacy concerns related to open-

source software.
166. Supra notes 163 and 164.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

358 Michigan Telecommunications and Technology Law Review [Vol. 9:313

another.167 Linux has not yet fragmented to the same extent as Unix, and
perhaps it never will, but Linux distribution differences have posed
problems to developers and non-technical users.168 Additionally, to the
extent that open-source users take advantage of one of the claimed
benefits of open source, their freedom to modify and customize code,
fragmentation occurs.

2. Proprietary Software

a. Advantages

As with other industries based on intellectual property, the possibil-
ity of earning returns on an investment encourages firms to make the
initial investment. For example, one of the big movies of 2001 was the
first installment of Lord Of The Rings. The movie’s creators would have
no incentive to devote as much time, effort, and money into the script,
stars, and special effects if everyone who saw the movie could legally
distribute copies to everyone else. Software is no different in this regard.
The extent of intellectual property protection that computer software
should receive might be debatable, but it is untenable, from an economic
perspective, to argue that no protection should be available.

With proprietary software, a firm can control the destiny of its prod-
ucts. With this control, the firm has profit motives to make its products
highly valued by consumers. As a result, vendors typically try to make
their products backwards compatible with earlier versions, so that docu-
ments and user training can experience a smooth transition from an older
version to a newer one.

The issue of fragmentation is related. One strength of both Windows
and the Macintosh is that they provide consistent platforms on which
applications can be run.169 Developers for Windows (or the Macintosh)
know that if they write their programs in certain ways, these programs
should run on all computers meeting specific hardware and operating
system requirements (e.g., Windows ME, Windows 2000, or later; OS X

167. The Linux Standard Base initiative is trying to overcome this particular problem.

Linux Standard Base, Standardizing the Penguin, at http://www.linuxbase.org/ (last visited
Jan. 23, 2003).

168. In addition to the problem with file locations, different Linux distributions have
sometimes included different (and incompatible) program “libraries” used in running applica-
tions. Andrew Leonard, Is Red Hat becoming Linux’s Microsoft?, at http://www.salon.com/
tech/feature/1999/07/14/redhat/index1.html (Jul. 14, 1999); Charles Babcock, Linux vs. Linux,
Inter@ctive Week, Mar. 19, 2000 (on file with MTTLR).

169. This consistency is important in providing the benefits of network effects to users.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 359

or later). This is not true for Linux developers because of the free-for-all
customization possibilities. A developer who wants to write a program
that permits the linking of objects (such as putting a graph from a
spreadsheet into a word processing document) can readily do so on ei-
ther Windows or the Macintosh using standard methods for each;
someone wanting to do so for Linux faces an uphill battle.170

b. Disadvantages

A technically adept user who encounters a bug in a proprietary pro-
gram cannot fix it himself; the most he can do is report the bug and hope
a fix is made available soon (but the vendor of a proprietary program has
financial incentives to make it easy for users to obtain and install bug
fixes, in order to keep customers happy). Similarly, a technically adept
user cannot customize a proprietary program except in the ways the ven-
dor has chosen to make the program extensible. Neither of these issues is
important to the vast majority of home users, but they can be important
to large customers. Even if the program vendor eventually releases a ver-
sion with features more to the liking of a given user, the technically
adept user might have been able to implement those features more
quickly on his own.

B. Open Source: Innovation and Imitation

Discussions of “innovation” have sometimes debated whether the
term should refer to the invention of technology or the popularization of
technology.171 By either measure, open-source software seems to have
performed poorly. Although there are important exceptions, discussed
below, the open-source movement has focused mainly on developing
software that imitates successful proprietary software. Some of the early
efforts under BSD-style licenses seem to have been truly innovative.
Some of these early efforts are BIND, the BSD family of operating

170. Both the KDE and GNOME desktops have “component” models—but they are dif-

ferent. A program written to use the KDE component model cannot interoperate with a
program written to use the GNOME component model. Stephen Shankland, The Struggle for
the Future of Linux, CNETNews.com, Feb. 26, 2001, at http://news.com.com/2102-1082-
253153.html (last visited Jan. 23, 2003). The use of Linux in “embedded” devices (such as
cell phones, handheld computers, robotics) faces similar problems. Matthew Broersma, Em-
bedded Linux Crying Out for Standards, ZDNet UK, May 16, 2002, at http://zdnet.com.com/
2102-1104-916331.html (last visited May 18, 2003).

171. See, e.g., Marco Iansiti & Josh Lerner, Evidence Regarding Microsoft and Innova-
tion, AEI-Brookings Related Publication, Apr. 2002, available at http://aei.brookings.org/
admin/pdffiles/innovation.pdf.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

360 Michigan Telecommunications and Technology Law Review [Vol. 9:313

systems,172 Sendmail, perhaps Perl, and the X Window system and its
Xfree86 implementation for Intel-compatible computers. Apache
(another BSD-style license) came a bit later but also has some claim to
being innovative.

On the other hand, some of the early efforts from the FSF (now often
licensed under the GPL) and many modern projects seem more deriva-
tive, less innovative, and sometimes downright imitative. One of FSF’s
original objectives was to imitate Unix to develop a “free” version. The
FSF work began with development tools, which was also an imitative
step. The Linux kernel (leading to the numerous Linux distributions
available today) was likewise an attempt to imitate the functionality of
Unix. The GNOME and KDE desktops do not clone the user interfaces
of either Windows or the Macintosh, but they attempt to bring the same
kind of usability to Unix-like operating systems. Samba is an explicit
attempt to clone the functionality of Windows servers for use with Linux
and Unix servers. MySQL is an implementation of a database with a
standard set of capabilities (called Structured Query Language, or SQL).

Some observers have suggested that the open-source method tends to
promote innovation more than the proprietary method and that the de-
velopment method itself promotes innovation. For example:

The development model encourages tremendous innovation.
When developers can see and modify source code, they receive
rapid feedback and a constant flow of ideas from other develop-
ers.173

Other factors are also clearly at work, however since copying and
cloning are easier than innovating. For example, a recent interview with
a Miguel de Icaza, key open-source developer, discussed a recent attempt
called Mono to clone new computer language technology from Micro-
soft (part of what Microsoft calls .Net):

[Miguel] found a certain utility in the specification that lies at
the center of .Net. That, coupled with the sentiment “It’s a lot
easier to implement than to design” an architecture, led Miguel
and friends to start the Mono project.174

172. See discussion supra Part IV.D.1.b.
173. O’Reilly Press Room, Open Source Pioneers Meet in Historic Summit (Apr. 18,

1998), at http://press.oreilly.com/pub/pr/796.
174. Russell Pavlicek, Get Mono from .Net?, InfoWorld, Mar. 29, 2002, at http://

archive.infoworld.com/articles/op/xml/02/04/01/020401opsource.xml.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 361

In addition, Lawrence Lessig has argued that open source contrib-
utes to an intellectual “commons,” which can serve as a springboard
toward further development.175 He considers several open-source projects
to constitute the “soul” of the Internet: Linux (an operating system),
Apache (a Web server), Perl (a scripting language), BIND (domain name
software), and Sendmail (an e-mail server).176 Professor Lessig also said:

Together with the public domain protocols that define the Inter-
net . . . this free code built the Internet. This is not a single
program or a single operating system. The core of the Internet
was the collection of code built outside the proprietary model.177

Not strong, perfect control by proprietary vendors, but open and
free protocols, as well as open and free software that ran on top
of those protocols; these produced the Net.178

This is not quite right. It is true that the Internet has been built on
open and free protocols, but open protocols are conceptually very differ-
ent from open-source software.179 And it is true that the Internet grew up
around some of the products that Professor Lessig considers its “soul,”
particularly BIND and Sendmail. But what was the direction of causal-
ity? The Internet was not made commercially available until 1991 when
the U.S. National Science Foundation removed restrictions on commer-
cial use of NSFNET.180 It was originally developed under government
sponsorship to connect computer groups at universities and other re-
search institutions. Until the Internet became commercial, there was
little reason for firms to attempt to write proprietary software for it. The
early, non-commercial Internet more resembled the mainframe era of the
1960s, with software usually written by its own technically adept users
rather than the commercial software era that roared into action in the
1980s with the widespread adoption of PCs and the development of cor-
porate networks of PCs.

175. This view is not unlike the FSF’s view of a GPL “club,” mentioned above. “This

free code builds a commons.” Lessig, supra note 7, at 57.
176. Id. at 56.
177. Id.
178. Id. at 57. Lessig also quotes similar sentiments from Alan Cox, “second only to

Linus Torvalds in the Linux chain.” Id.
179. A “protocol” can be thought of as a definition of how to do something. An “open”

protocol is one that can be used freely by anyone; the code to implement an open protocol can
be implemented in either open-source or proprietary software.

180. National Science Foundation, The Internet, at http://www.nsf.gov/od/lpa/nsf50/
nsfoutreach/htm/n50_z2/pages_z3/28_pg.htm#answer3 (last visited May 18, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

362 Michigan Telecommunications and Technology Law Review [Vol. 9:313

Of the five “soul” projects, Linux was the only one released under
the GPL. The other products are all available under less commercially
restrictive licenses.181 How “innovative” were these projects? As
economists, we do not pretend to provide firm answers to these
questions. As noted above, Linux began life explicitly as an attempt to
clone Unix. The quality of Linux may well be high, but it seems
imitative, not innovative.182 Our understanding is that BIND helped make
the Internet possible,183 and Sendmail ushered in the switch from older
Internet e-mail to more modern Internet e-mail.184 Perl was not the first
scripting language,185 but it does seem to have gained rapid acceptance
and is widely used for some purposes.186 Although Apache was neither
the first nor only187 Web server, it is directly descended from “patches”
(hence the name) to the early NCSA Web server, whose development
had stalled.188 Thus, on balance, Apache’s heritage and wide popularity
suggest it should be considered innovative. These four products, all
available under BSD-style licenses, have stronger claims to being
innovative than does Linux.189

Of course, pointing out a few products that may be innovative, and
contrasting with a few that may not, provides little to support the conten-
tion that open-source software was not innovative. What should be
considered innovative? This is, even in principle, a difficult question to

181. Perl is available under two licenses, one of which is the GPL and the other of which

is more permissive than the GPL. Free Software Foundation, Various Licenses and Comments
about Them, http://www.gnu.org/licenses/license-list.html (last updated Jan. 6, 2003).

182. Some products related to Linux might be considered innovative. For example, pro-
jects to link together large clusters of relatively inexpensive Linux computers into a single
“supercomputer” show promise. See NASA, infra note 284, and Sandia Lab News, infra note
285.

183. “BIND was originally written around 1983–1984 for use on Berkeley Software Dis-
tribution (BSD 4.3 and later releases) of UNIX by a group of graduate students at the
University of California at Berkeley under a grant from the US Defense Advanced Research
Projects Administration (DARPA). . . . The Internet Software Consortium has outsourced the
development work on BIND 9 to Nominum, Inc.” Nominum, supra note 150.

184. Red Hat Sendmail HOWTO, supra note 150.
185. Perl explicitly acknowledges “ancestors” like C, awk and sh. Elaine Ashton, The

Timeline of Perl and its Culture, at http://history.perl.org/PerlTimeline.html (last visited May
18, 2003).

186. See supra text accompanying note 154.
187. Web servers from Microsoft, Sun, and other companies are also widely used.
188. Apache, Apache HTTP Server Project, at http://httpd.apache.org/ABOUT_

APACHE.html (last visited May 18, 2003).
189. See supra Part IV.D.1.a for a discussion on Linux. See supra Part IV.D.1.b for a dis-

cussion on BIND, Sendmail, Perl, and Apache.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 363

answer. Consider the following questions in the category of word proc-
essing software:

• Word processing software was available for minicomputers
and dedicated word processing machines before personal
computers even existed. Were early word processing pro-
grams for personal computers innovative?

• Was the integration of spelling checkers (and other features
of modern word processors—table handling, equation edi-
tors, graphics editors, etc.) innovative?

• Was the development of graphical word processors (true
“what you see is what you get”) innovative?

The breadth and depth of currently available commercial software
came, in general, from investments made in pursuit of profits. Many
products have copied their competitors and improved their features. That
is the nature of the competitive process. But the spreadsheets, word
processors, presentation graphics, multimedia encyclopedias, video
games, graphics arts, and other commercial products of today bear little
or no resemblance to their forbearers (if any) 25 years ago. Clearly,
much innovation in commercial software has occurred over those 25
years. Just as clearly, much (but certainly not all) of the focus of GPL
software over the past two decades has been on creating “free” versions
of proprietary software, as even a cursory glance at the projects hosted
on SourceForge reveals.

C. The Future Evolution of Open Source
without Government Favoritism

Absent government favoritism for (or against) open-source software,
software users will choose software that best suits their needs, taking
into account price, quality, ease of use, support, and other characteristics
that they consider important. As discussed above, nothing in the history
of commercial software suggests that self-interested consumers will
make ill-informed decisions; software market leaders can and do get re-
placed.190 For some types of customers and software, proprietary
software is likely to be more successful; for other types of customers and
software, open-source software is likely to be more successful.

190. See Evans, supra note 65; Liebowitz, supra note 65.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

364 Michigan Telecommunications and Technology Law Review [Vol. 9:313

Open source has proved useful in numerous areas managed by the
technically adept: operating systems, file servers, Web servers, mail
servers, and development tools for all of the preceding. Open-source
products have made substantially less progress in areas that interest mass
consumers, who value ease of use far more than do the technically adept.
Open-source products, however, will certainly continue to provide
competitive pressure to proprietary software developers. This pressure
will likely persist because the open-source production method is geared
towards serving the technically adept and not the mass market.191 Even
some major proponents of open-source software take that view.192

Whatever happens to open source generally, Linux appears to have
taken on a life of its own. Linux may succeed at something that has
eluded hardware and software vendors for over a decade: unifying Unix.
For a variety of reasons, Unix fragmented into many not-quite compati-
ble flavors in the 1980s and 1990s. Some attempts were made to unify
Unix,193 but today, the integrated server vendors and integrated work-
station vendors continue to ship their own Unix flavors: Solaris, AIX,
HP-UX, Irix, Tru64 Unix, and so forth. Some vendors, most notably
IBM, are now interested in Linux.194 Others are less so. For example, Sun
uses Linux on low-end servers based on Intel-compatible hardware,195 but
it uses only its own version of Unix on all computers based on its own
SPARC processor family.196

An advantage of supporting Linux is that a computer vendor can rely
on others to incur most of the costs of developing the operating system;

191. Open source has potential in another important area: “embedded devices.” These

include set-top boxes for advanced cable television services, cash registers, ATMs, personal
digital assistants (PDAs, like the Palm family of products), and more. These devices need an
operating system; many also need at least some degree of network or even Internet connec-
tivity. Since these devices tend to have relatively fixed user interfaces, they do not face the
usability requirements of operating systems on PCs. Further, developers of the hardware often
need operating systems that are highly customized to their hardware; open-source operating
systems such as Linux permit them to do their own customization. But many other operating
systems are already widely used for embedded devices.

192. See, e.g., Brian Behlendorf, Open Source as a Business Strategy, in Open Sources:
Voices From the Open Source Revolution 149 (Chris DiBono et al., eds. 1999), available
at http://www.oreilly.com/catalog/opensources/book/brian.html.

193. The Open Group: History and Timeline, UNIX Past, at http://www.unix-
systems.org/what_is_unix/history_timeline.html (Jun. 25, 2001).

194. Evans, supra note 130.
195. Sun Store U.S., Sun Fire B100s Blade Server, http://store.sun.com/catalog/doc/

BrowsePage.jhtml?catid=93754 (last visited May 6, 2003).
196. Sun Store U.S., Sun LX50 Server, http://store.sun.com/catalog/doc/Browse

Page.jhtml?cid=85662&parentId=48589 (last visited May 6, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 365

the computer vendor then only incurs costs of fine-tuning Linux for its
own hardware. A disadvantage is that relying on Linux would eliminate
the operating system as a point of differentiating the vendor’s integrated
product from those of its competitors (one of the reasons why Unix
fragmented). Although Linux may have the potential to unify Unix, the
scope of that potential is unknown. Moreover, Linux faces its own poten-
tial for fragmenting, as discussed above.

Part VI. Government Interventions in the Software
Market to Assist Open Source

Governments use significant amounts of computer software. The
U.S. government alone spent $3.7 billion on prepackaged software in
2000.197 State and local governments spent another $4.5 billion on pre-
packaged software in 2000.198 Like profit-maximizing businesses,
governments usually make decisions to use proprietary or open-source
software for particular applications based on the merits. In some cases,
open-source software is better than proprietary software with regard to
price, technical advantages, or both. In other cases, proprietary software
may be the best choice because its technical superiority outweighs the
fact that the open-source alternative provides the source code for free.
Or, there may be no open-source alternative. For example, the Bundestag
in Germany recently decided, based in part on a study it commissioned,
to use Linux on most servers while using Windows for clients on desk-
tops.199 While one could argue whether this is the right decision and
insinuate that the Bundestag had other motives, it is indistinguishable
from similar decisions made by profit-maximizing businesses.

However, proponents of open source have lobbied governments
around the world to provide various preferences for open-source soft-
ware. Richard Stallman recently spoke about copyright and open-source
software before the Brazilian Congress.200 But, support has also come

197. 2001 Annual NIPA Revision, Bureau of Economic Analysis, and the U.S. Depart-

ment of Commerce, Tables 1, 11 (Aug. 2001), available at http://www.bea.doc.gov/bea/
papers/tables.pdf (last visited May 18, 2003).

198. Id.
199. Ältestenrat Stimmt für Linux auf Bundestags-Servern [The Ältestenrat, council of

the oldest members, votes for Linux for the Bundestag servers], Heise Online, Mar. 14, 2002
[hereinafter Ältestenrat Stimmt], available at http://www.heise.de/newsticker/data/anw-
14.03.02-012/.

200. Stallman Addresses Brazilian Congress, supra note 6.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

366 Michigan Telecommunications and Technology Law Review [Vol. 9:313

from outside the open-source community. For example, as will be dis-
cussed infra, Professor Lessig argued that governments should support
open source.201 Governments have established study groups to consider
government support for open source, and politicians in many countries
have introduced legislation to help open source. Few governments, to
date, have enacted explicit preferences for open-source software; the
most prominent are a handful of Brazilian cities.

This section examines whether there is an economic rationale for
having governments provide preference to open-source software. Are
there reasons to believe that market competition between proprietary and
open-source software will fail to achieve the socially optimal mix of
these two kinds of software? If so, are there reasons to believe the gov-
ernment interventions can increase social welfare by giving open-source
software some form of boost? If not, to what extent could government
interventions in favor of open source reduce social welfare?

Section A explains the economic approach to analyzing whether
government intervention into the marketplace is desirable. The answer
turns on whether there is a market failure and whether there is a govern-
ment solution that can make things better. Section B presents a survey of
government proposals and initiatives concerning open source. The public
rationales for preferring open source range from the purely technical to
the purely ideological. Only a few of these rationales involve even the
suggestion that there is a market failure that needs to be corrected. Sec-
tion C considers the two possible economic arguments for granting
preferences to open source: that open source is more innovative but
would otherwise be underfunded in a market economy and therefore
should get special treatment; and that the government should encourage
open-source software—especially Linux—to provide a competitive al-
ternative to proprietary software—generally with Microsoft in mind.
Section D evaluates from an economic standpoint a particular govern-
ment policy that would require that the results of certain government-
funded software development be issued under the GPL.

A. The Economic Approach to Government Intervention

Modern economics starts with the proposition that market forces
generally do a rather good job by themselves at maximizing social
welfare which is measured, roughly speaking, as the value that society
gets from its scarce resources. There is a body of theoretical literature,

201. Lessig, supra note 7, at 247.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 367

starting with Adam Smith’s Wealth of Nations,202 that explains how the
selfish actions of individuals and businesses result in the production and
allocation of goods and services in a way that tends to make the group as
well off as possible. As Smith put it, every individual is

[L]ed by an invisible hand to promote an end which was no part
of his intention. Nor is it always the worse for the society that it
was no part of it. By pursuing his own interest he frequently
promotes that of the society more effectually than when he
really intends to promote it.203

Modern mathematical models explain how this decentralized process
maximizes the collective good in formal terms.204

A wide variety of practical experience generally supports the propo-
sition—at a very gross level—that market forces, and economies in
which these forces are left largely unfettered by government involve-
ment, are better than their alternatives at maximizing social welfare.
Much of the 20th century was devoted to the grand experiment to see
whether controlled versus capitalistic economies worked best; it ended
with the large-scale collapse of the controlled ones and the boom of the
capitalist ones. Within the capitalist economies, government efforts to
regulate, or in some cases run, major industries such as the post office,
telecoms, airlines, and energy led to great dissatisfaction. Beginning in
the mid-1970s, this dissatisfaction spawned efforts to greatly reduce
government involvement in industry. The United States and Great Britain
led this trend, but other countries, such as France and Japan, have fol-
lowed suit.

This is not to say that governments do not have any role in the econ-
omy or that interventions by the government cannot improve on market
forces in some circumstances. Economists have identified two major
conditions that are necessary for an intervention to make the public eco-
nomically better off. First, identify a market failure—provide an
explanation why the market, presumed to be efficient most of the time,
does not work. Second, identify a government solution that is likely to

202. Adam Smith, An Inquiry Into the Nature and Causes of the Wealth of

Nations 423 (1937).
203. Id. at 423.
204. Kenneth J. Arrow and John R. Hicks shared the 1972 Nobel prize in economics for

early work in this area. Nobel e-museum, Bank of Sweden Prize in Economic Sciences in
Memory of Alfred Nobel 1972, at http://www.nobel.se/economics/laureates/1972/ (last modi-
fied Jun. 16, 2000).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

368 Michigan Telecommunications and Technology Law Review [Vol. 9:313

correct the market failure at a reasonable cost, without introducing other
problems.

Economists have identified many theoretical situations in which
market forces may not maximize public welfare. Indeed, a great deal of
research in economics in the last quarter century has shown that Adam
Smith’s Invisible Hand is not quite as benevolent as he suggested. The
Nobel Prize in Economics was awarded in 2001 to three economists—
George Akerlof, Joseph Stiglitz, and Michael Spence—who identified a
raft of problems over the years.205 Examples of situations in which mar-
ket forces may not maximize public welfare include the following, all
long known to economists and governments:

1. Market economies tend not to produce and disseminate
enough technical knowledge. On the one hand, they may not
produce enough because once technical knowledge is pro-
duced, it is often technically easy for others to share in the
benefits without paying for the costs; if incentives do not ex-
ist to produce technical knowledge, it will not be produced.
Once technical knowledge is produced, market economies
may not disseminate it enough because those who produce it
may keep it a secret—even though it is costless to dissemi-
nate—to protect their investment. The patent system is an
imperfect government method for remedying these failures;
the government gives inventors a temporary monopoly over
their inventions in exchange for full disclosure.

2. Market economies find that in some industries only one firm
can survive. There is a natural monopoly in the sense that
one firm can serve consumers more efficiently than could
two; but, undisciplined by competition, this monopoly may
charge too much and produce too little relative to what best
serves the public. Public utility regulation is an imperfect
method for fixing this problem; historically regulators have
limited profits and prices. Market methods—such as auc-
tioning off monopolies—have become more popular over
the years, and intrusive government regulation less popular.

205. The Royal Swedish Academy of Sciences Press Release, The 2001 Sveriges Riks-

bank (Bank of Sweden) Prize in Economic Sciences in Memory of Alfred Nobel (Oct. 10,
2001), at http://www.nobel.se/economics/laureates/2001/press.html.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 369

3. Private businesses do not consider the costs they impose on
society when they emit toxic substances; these “negative ex-
ternalities” can be controlled by government regulation.

At least since Ronald Coase’s work,206 however, economists have
recognized that government solutions do not always make things better.
First, there may not be a government solution that actually fixes the mar-
ket failure. Second, if there is, that solution may require the creation of a
costly government bureaucracy. Third, that solution may have all sorts of
side effects that cause many different market failures that cost the public
more than the original failure. Fourth, the theory of rent-seeking sug-
gests that, in certain cases, coalitions can work the political process to
get government interventions that benefit the coalition at the expense of
the public at large. These coalitions often justify interventions on the
grounds that they are needed to remedy a market failure. So, the fourth
problem results from erroneously and expensively fixing a market failure
that may not have existed in the first place.

Economists have widely acknowledged that government cures may
be worse than the disease. For example, Professor Stiglitz wrote:

Whenever there is a market failure, there is a potential role for
government. Government needs to consider each of the alterna-
tives . . . and assess the likelihood that one or the other
alternative will succeed. Such an assessment may conclude that
it is better not to intervene after all. Recent decades have pro-
vided numerous examples of government programs that have
either not succeeded to the extent their sponsors had hoped, or
failed altogether.207

Professors Michael Katz and Harvey Rosen said:

It must be emphasized that while efficiency problems provide
opportunities for government intervention in the economy, they
do not require it. That the market-generated allocation of re-
sources is imperfect does not mean that the government can do
better. For example, in certain cases the costs of setting up a
governmental agency to deal with an externality could exceed
the cost of the externality itself. Moreover, governments, like
people, can make mistakes. Indeed, some argue that the govern-
ment is inherently incapable of acting efficiently, so that while in

206. Ronald H. Coase, The Problem of Social Cost, 3 J.L. & Econ. 1 (1960).
207. Stiglitz, supra note 9, at 163.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

370 Michigan Telecommunications and Technology Law Review [Vol. 9:313

theory it can improve upon the status quo, in practice it never
will. While extreme, this argument does highlight the fact that
the First Welfare Theorem is helpful only in identifying situa-
tions in which intervention may lead to greater efficiency.
(emphasis in original)208

As with most real-world markets, software markets do not work as
perfectly as a benevolent central planner would like. To begin with, most
economic work demonstrating the optimality of markets is based on as-
sumptions that do not apply to software. Most of this work applies to
markets, such as that for wheat, with thousands of producers competing
with each other, full disclosure of information on prices and quality, and
a more or less static environment. In contrast, the software industry in-
volves substantial fixed costs, the creation of intellectual property, and a
substantial gap between prices and marginal costs for successful prod-
ucts.209 Plus, the software market is dynamic and subject to rapid rates of
technological change, with leapfrogging competition between prod-
ucts.210 As noted above, however, the fact that competition in software
does not resemble that in wheat does not necessarily mean that the gov-
ernment should step in and regulate the software industry.

Economists have only begun to analyze formally the properties of
the kind of competition seen in software, and the work has progressed
slowly because the problem is actually quite difficult.211 To date, only a

208. Michael L. Katz & Harvey S. Rosen, Microeconomics 399 (Irwin/McGraw-

Hill 1998).
209. “Price = marginal cost” is the condition for socially optimal production in the sim-

ple textbook model of industry.
210. Elzinga, supra note 44; David S. Evans & Richard Schmalensee, Some Economic

Aspects of Antitrust Analysis in Dynamically Competitive Industries, in Innovation Policy
and the Economy 1 (Adam B. Jaffe et al. eds., 2002).

211. Economists have used models of dynamic competition to examine many different
economic issues including patent races, standards and compatibility, and diffusion of technol-
ogy. See, e.g., Michael L. Katz & Carl Shapiro, Network Externalities, Competition, and
Compatibility, 75 Am. Econ. Rev. 424 (1985); Michael L. Katz & Carl Shapiro, R&D Rivalry
with Licensing or Imitation, 77 Amer. Econ. Rev. 402 (1987); Gene Grossman & Carl
Shapiro, Dynamic R&D Competition, 97 Econ. J. 372 (1987); Drew Fudenberg & Jean Tirole,
Pricing a Network Good to Deter Entry, 48 J. Indus. Econ. 373 (2000); Jennifer F. Rein-
ganum, The Timing of Innovation: Research, Development, and Diffusion, 1 Handbook of
Industrial Organization 849 (Richard Schmalensee & Robert D. Willig, eds. 1989); Jean
Tirole, The Theory of Industrial Organization 389–421 (1988); Paul Stoneman,
Economic Analysis of Technological Change (1983). However, others note that it is
extremely difficult to model many aspects of competition in these types of industries. See, e.g.,
John Sutton, Technology and Market Structure: Theory and History 341, 341–413
(2001).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 371

very few papers have attempted theoretical investigations of competition
between open-source and proprietary software. In general, these papers
reach conclusions that are consistent with the view that banning the use
of proprietary software (for all consumers or even just for government
consumers) would make consumers generally worse off.212

Further, as discussed above, the history of the software industry sug-
gests that the industry has worked quite well from the standpoint of
consumers without government mandates concerning software. We saw
earlier that output has increased quickly, quality-adjusted prices have
fallen, and innovation has been rapid. All of these made consumers bet-
ter off. Although firms have dominated particular categories of software,
at least for a time, the industry is fairly unconcentrated and participants
generally consider it highly competitive.213 These features, too, strongly
suggest that the industry operates to the benefit of consumers. There is a
considerable amount of entry into and exit from the industry, and key
players turn over with some frequency. Economists take these character-
istics as showing the competitive health of an industry.214 Of course, there
could be problems that need fixing and solutions worth considering, but
any such problems would need to be identified and solutions targeted at
those specific problems—not at the industry as a whole.

B. Governments Proposals and Initiatives
Concerning Open Source

To understand current government thinking on open source, we have
conducted a survey of proposals and initiatives around the world. This

212. James Bessen, Open Source Software: Free Provision of Complex Public Goods, at

http://www.idei.asso.fr/Commun/Conferences/Internet/OSS2002/Papiers/Bessen.PDF (work-
ing version Jun. 2002); Gilles Saint-Paul, Growth Effects of Non Proprietary Innovation, at
http://www.idei.asso.fr/Commun/Articles/St-Paul/os1.pdf (Oct. 16, 2001); Klaus Schmidt
& Monika Schnitzer, Public Subsidies for Open Source? Some Economic Policy Issues of the
Software Market, http://www.idei.asso.fr/Commun/Conferences/Internet/OSS2002/Papiers/
Schmidt.pdf (preliminary version Jun. 14, 2002).

213. See, e.g., Elzinga, supra note 44. See also Microsoft Corp., Form 10-K for Fiscal
Year Ended Jun. 30, 2001 (citing “the software business is intensely competitive and subject to
rapid technological change”); Oracle Corp., Form 10-K for Fiscal Year Ended May 31, 2001
(stating “the computer software industry is intensely competitive and rapidly evolving”); Sun
Microsystems, Form 10-K for Fiscal Year Ended Jun. 30, 2001 (noting “we compete in the
hardware and software products and services markets. These markets are intensely competi-
tive”); SAP AG, Form 20-F for Fiscal Year Ended Dec. 31, 2001 (discussing that “the software
and Internet industry is intensely competitive”).

214. Dennis W. Carlton & Jeffrey M. Perloff, Modern Industrial Organiza-
tion 56, 56–58 (3d ed. 2000).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

372 Michigan Telecommunications and Technology Law Review [Vol. 9:313

section presents the highlights. It begins by surveying some of the key
initiatives and then summarizes the most frequently mentioned rationales
for government to support these initiatives.

We begin with politico-economic observations: as users of software,
governments face daily decisions about what software to use. In general,
these decisions are no different than those that must be made by count-
less private firms and individuals around the world. There are some
differences, however. When legislators get involved, these decisions are
moved from the strictly technical/economic arena to the political. Much
the same is true when administrators set up special commissions to con-
sider whether to institute government policies that favor open source.
Decisions based on the merits would not need such special commissions;
for instance, private firms and individuals make their decisions without
commission recommendations. As a result, special commissions, legisla-
tive proposals, and the like demonstrate that government decisions may
be made on grounds that a private company would not consider (e.g., a
private company’s goal is to make money, not to please the voting pub-
lic).

1. Initiatives

a. European Commission and
European Parliament

The European Commission and the European Parliament have initi-
ated a number of studies of open source. Many of these studies have
touted the benefits of open source, and some have recommended
affirmative efforts to expand the use of open source by the Commission
and by the Member States. The European Commission and the European
Parliament, however, have not approved any serious programs that would
promote open source at the expense of proprietary software. To take one
example, the Commission’s Interchange of Data between Administra-
tions (IDA) program issued a study in June 2001 that concluded open
source software is “still not extensively used in most of the European
Member States’ public administrations,” but “on general-purpose servers
as well as on office desktop, Open Source software will present tomor-
row the most realistic, and sometimes the only real technical and
economical alternative to Microsoft products.”215 The study also argued:

215. Patrice-Emmanuel Schmitz, Part 3: The Open Source Market Structure 7, in Study

into the Use of Open Source Software in the Public Sector, Interchange of Data be-

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 373

“the requirement of the use of [open source software (OSS)] should be
justified under Article 81, paragraph 3” of the European Community
(“EC”) treaty;216 “software patents present a major threat concerning a
fundamental liberty”;217 “OSS is considered to better respect stan-
dards”;218 “OSS in general and GPL in particular permits a greater rate of
innovation, with greater efficiency”;219 and “with OSS you will have no
(or less) backdoor(s), no electronic spy that may be totally hidden
somewhere in the software.”220 Thus far, although the Commission ap-
pears to support open source, it has not acted on these findings, which
appear to have both economic and ideological elements (e.g., “funda-
mental liberty” has little to do with economics).

To take another example of support, the European Parliament
adopted a Resolution on September 5, 2001 that “urge[d] the Commis-
sion and Member States to . . . promote . . . European encryption
technology and software and above all to support projects aimed at de-
veloping user-friendly open-source encryption software.” Also, it “calls
on the Commission and Member States to promote software projects
whose source text is made public (open-source software),” and it asked
“the Commission to lay down a standard for the level of security of e-
mail software packages, and to place those packages with non-public
source code in the ‘least reliable’ category.”221 The Parliament’s recom-
mendations are only that and were not adopted by the Commission as far
as we know.

tween Administrations, Jun. 2001, http://europa.eu.int/ISPO/ida/export/files/en/835.pdf (last
visited May 18, 2003).

216. Id. at 68. Article 81 (1) prohibits “. . . all agreements between undertakings, deci-
sions by associations of undertakings and concerted practices which may affect trade between
Member States and which have as their object or effect the prevention, restriction or distortion
of competition within the common market . . .” Paragraph 3 exempts from the scrutiny of
paragraph 1 those practices that contribute to “. . . improving the production or distribution of
goods or to promoting technical or economic progress, while allowing consumers a fair share
of the resulting benefit . . .” IDA argues that the use of OSS could be justified as the practice
that promotes “technical or economic progress, allowing consumers a share of the resulting
benefits.”

217. Id. at 74.
218. Id. at 15.
219. Id. at 39.
220. Id. at 16.
221. European Parliament resolution, supra note 2; see also Paul Meller, European

Parliament Adopts Echelon Report, Computerworld, Sept. 5, 2001, http://
www.computerworld.com/securitytopics/security/story/0,10801,63553,00.html.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

374 Michigan Telecommunications and Technology Law Review [Vol. 9:313

b. Germany

The German government, however, has undertaken concrete
initiatives to promote open source and, along with France, is one of the
most active national governments in this field. On March 14, 2002, the
Council of Elders, a joint deliberative body whose task is to manage the
internal affairs of the Bundestag, arrived at a decision on the new
Bundestag information technology (“IT”) environment. It decided to
follow the luK (eleven-member committee comprised of representatives
from major political parties) recommendation222 to install Linux on
approximately 150 servers and Windows XP on 5,000 desktops.223 As
noted earlier, the decision does not necessarily amount to a government
intervention in open source since governments, just like businesses, must
make IT decisions. However, numerous political statements in favor of
open source accompanied the debate in the Bundestag over the migration
issue.224 These statements demonstrate that the bias towards open source
is not based entirely on technical and economic considerations.

The Bundestag had earlier passed a resolution on “Germany’s Econ-
omy in the Information Society” on November 9, 2001 explicitly to
promote open source software in the federal administration. Supported
by the Social Democrats and Greens, the resolution describes open
source as a means to secure competition against dominant players in
software markets. It also listed the claimed advantages of open source:
stability, better potential to be tailored to users’ needs, and high security.

222. The luK recommendation was based on the INFORA study commissioned by the

Ministry of Interior, which analyzed various scenarios of Bundestag IT environment.
223. Ältestenrat Stimmt, supra note 199. See also Linux für die Server, Windows für PC

im Abeorgnetenhaus [Linux for the servers, Windows for PC in the parliament],
at http://www.heute.t-online.de/ZDFheute/artikel/0,1251,COMP-0-178460,00.html (Feb. 2,
2002); Studie empfiehlt Schily Server-Umrüstung auf Linux [German Minister of the Interior
added to change servers to Linux], Heise Online, Dec. 7, 2001, http://www.heise.de/bin/
nt.print/newsticker/data/jk-07.12.01-008/?id=80204dba&todo=print.

224. For instance, a Social Democrat, Jörg Tauss, announced, “[M]y wish would be to
declare the entire Bundestag a Microsoft-free zone.” See John Ness & Stefan Theil, The
Threat of a Linux Generation, Newsweek Int’l, Mar. 11, 2002, available at http://www.my-
opensource.org/lists/myoss/2002-03/msg00010.html. The Greens stated that open source
represents a special chance for the European software segment, since for the first time the
United States is not leading in the field. They also stated, “Open Source entspricht der grünen
Philosophie von Transparenz, Bürgerbeteiligung und Partizipation” [“Open Source corre-
sponds to the green philosophy of transparency and citizen participation”]. See
http://www.gruene-fraktion.de/rsvgn/rs_dok/0,,669,00.htm (on file with author). Steffi Lemke,
the representative of the Greens, announced that the decision to migrate towards Linux in the
Bundestag was the first important step towards the adoption of open source. Il parlamento
tedesco dice sì a Linux, Webnews, Mar. 11, 2002, at http://webnews.html.it/focus/181.htm.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 375

The resolution called on the government to introduce open source in the
federal administration and stated open source should be used wherever it
would lead to cost savings. Again, any legislative intervention into an
administrative issue reflects an unwarranted attempt to interject political
considerations into what should be a technical/economic decision. The
resolution considers open source as a special opportunity for the Euro-
pean software industry.

c. France

The French public sector has widely adopted open source solutions
since the beginning of 1999 and continues to move in the direction of
complete open-source infrastructure.225 In fact, several governmental in-
stitutions have already switched to open-source software. The Ministry
of Culture and Communication has started a massive migration towards
Linux. Its stated objective is to achieve full open-source infrastructure by
2005.226 Other agencies moving to open source include the Ministry of
Justice, the Department of National Education, and the Ministry of
Economy, Finance and Industry.227

Although these may well have been decisions on the merits, a num-
ber of proposals have been made in France that open source should be
chosen because it helps achieve other social objectives. Two bills, neither
of which was enacted into law, illustrate some French views on open
source. One parliamentary bill submitted in December 1999 would re-
quire that all software used by the government be open code and would
create an open source agency to oversee the transition process.228 Another
bill, submitted in May 2000, made a number of points about software:
1) software should not come from only one maker and, therefore, must
be open code so as to be compatible with software from other makers;
2) future use of software should not depend on the good will of the
manufacturer and therefore the source code should be available; 3) open
code software would permit users to detect attempts to “spy” on them;

225. Schmitz, supra note 215, at 28.
226. See Mandrake Linux, Le Ministère de la Culture, connu pour son engagement en

faveur du logiciel libre, confie à MandrakeSoft la mise en place de serveurs Linux dans six
musées de province, Oct. 16, 2000, http://www.linux-mandrake.com/fr/pr-culture.php3.

227. Schmitz, supra note 215, at 33–35.
228. Proposal for a Bill Purporting to Generalize the Use of the Internet and of Free

Software in the Administration (1999) (Fr.), available at http://www.senat.fr (on file with
author).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

376 Michigan Telecommunications and Technology Law Review [Vol. 9:313

and 4) principles for compatibility, competition in software, respect for
privacy, and civil liberties should be established.229

d. Brazil

A few Brazilian locales have succeeded in requiring the government
to use open source.230 In June 2001, the City Council of Amparo, a city in
São Paulo state, passed a law requiring that the municipal government
prefer free, unrestricted open-source software.231 The municipality of
Recife also has an open source preference pursuant to an executive
decree in April 2000.232 In December 2001, the Chamber of Councilmen
in Porto Alegre approved a project that sets the conditions for open
source use in the municipal administration.233 Several other Brazilian
cities and states have considered or are considering open source
preference proposals.234

e. Italy and Spain

In Italy and Spain, resolutions favoring the use of open-source soft-
ware have also been passed. In Italy, the city government of Florence
passed a resolution warning that the use of proprietary software was
leading to “the computer science subjection of the Italian state to Micro-
soft.”235 In May 2002, the Council of Pescara approved a motion,
introduced by the Italian Communist Party and the Left Democrats, ask-
ing for introduction and development of “Open Source Software” in

229. Proposal for a Parliamentary Bill Purporting to Reinforce Freedom and Security of

Consumers and to Enhance Competition in the Information Society (2000) (Fr.), available at
http://www.assemblee-nat.fr/propositions/pion2437.asp (last visited May 18, 2003).

230. See Paul Festa, Governments push open-source software, CNet News.com, Aug.
29, 2001, at http://news.com.com/2100-1001-272299.html?legacy=cnet.

231. See Linux On, Amparo é a primeira cidade de São Paulo a adotar Software Livre
[Amparo is the first city in the State of São Paulo to adopt open-source software] (Sept. 3,
2002) (on file with author).

232. See Cláudio M. Machado, Recife na rota do Software Livre [Recife in the route of
the open-source software], at http://www.pernambuco.com/tecnologia/arquivo/softlivre1.html
(last visited May 8, 2003).

233. See Projecto Software Livre—RS, Aprovado Projecto de Lei Sobre Software Livre
em Porto Alegre [Approved act about open-source software in Porto Alegre] (Dec. 14, 2001)
(on file with author).

234. The cities include Curitiba, Florianópolis, São Paulo and the states include Rio de
Janeiro, Bahia, Espirito Santo, Minas Gerais, Parana, Pernambuco, São Paulo, and Rio Grande
do Sul. Id.; see also Festa, supra note 230.

235. Festa, supra note 230.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 377

public administration of the Province of Pescara.236 In Spain, the Canary
Islands Regional Parliament approved a proposal to urge the regional
government, in partnership with local authorities and companies, to
promote use of OSS through training courses and increasing public
awareness about OSS availability.237

f. Venezuela

The Venezuelan government announced “all software developed for
the government must be licensed under the GPL,” with the general
objective being “open source whenever possible, proprietary software
only when necessary.”238 The government’s open source mandate seems
motivated by a desire to help local programmers. “The government and
the people of Venezuela were increasingly concerned that over
75 percent of the funds for software licenses went to foreign nations,
20 percent to foreign support agencies, and only 5 percent to Venezuelan
programmers.”239 The government’s specification of the use of the GPL
seems politically motivated, based in part on the “great wealth of
technical advisors”240 who are active Linux developers and users and who
“were clearly influential in reaching this new policy decision.”241

g. China, Singapore, and Peru

A software development group set up by the Chinese government
has demonstrated progress in developing its own Linux version to re-
place Windows and Unix on all government servers and PCs.242 “The
group’s goal is to develop an entire desktop environment with open
source technology for the government,”243 including office productivity
software.

236. See Open Source Nella Provincia di Pescara, at http://www.interlex.it/pa/

ppescara.htm (May 15, 2002).
237. See Boletin Oficial del Parlamento de Canarias, http://www.parcan.es/pub/Bop/5L/

2001/166/bo166.pdf (Jul. 20, 2001).
238. Brian Proffitt, Venezuela’s Government Shifts to Open Source Software, LinuxTo-

day, Aug. 30, 2002, at http://linuxtoday.com/mailprint.php3?action=pv<sn=2002-08-30-
011-26-NW-LL-PB.

239. Id.
240. Id.
241. Id.
242. Matt Berger, LinuxWorld Expo: Chinese Government Raises Linux Sail,

InfoWorld, Aug. 13, 2002, at http://archive.infoworld.com/articles/hn/xml/02/08/13/
020813hnchina.xml.

243. Id.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

378 Michigan Telecommunications and Technology Law Review [Vol. 9:313

Elsewhere, proposals on open-source software use are in various
stages. In Singapore, a government agency responsible for planning
strategies to aid the economy has reportedly decided to promote Linux.
The agency targets software developers, distributors, and service
providers and offers economic incentives such as tax breaks and grants
for Linux-related economic development. In Peru, a bill requiring the
use of free software in government computers is currently in the
legislature.244 Similar bills have been proposed elsewhere in Latin
America (e.g., Argentina).245

2. Rationales Offered

We reviewed the various studies and proposals and synthesized the
rationales that have been presented for using or promoting open source
software. Some of the rationales have involved claims that open source
provides certain technical or cost-saving advantages over proprietary
software. Basing purchasing decisions on such advantages does not
amount to a government intervention—obviously the government should
get the best software just as it should get the best tanks and the best pa-
perclips. Other rationales seem to be based on a desire to correct a
perceived market failure although the debates are seldom couched in
those terms, instead mentioning issues such as independence, innovation,
competition, and helping domestic industries. Finally, some of the ra-
tionales are based on ideological views. Our summary is based mainly
on Germany since the debate concerning open source seems to have pro-
gressed farther there than in any other jurisdiction. However, the general
arguments discussed below have been made in some form by various
people in many other countries.

244. Julia Scheeres, Peru Discovers Machu Penguin, Wired News, Apr. 22, 2002, at

http://www.wired.com/news/business/0,1367,51902,00.html; Thomas C. Greene, MS in Peru-
vian Open-Source Nightmare, The Register, May 5, 2002, http://www.theregister.co.uk/
content/4/25157.html.

245. In September 2000, a member of the Chamber of Deputies proposed legislation that
would create a procurement preference for OSS. The proposal would require that the federal
government, autonomous federal agencies, and state-owned enterprises use and acquire only
OSS. The bill expired in March 2002, and a new Bill of Free Software was submitted to the
Chamber of Deputies of National Congress on March 27, 2002. See Marcelo Dragan, Bill
5613-D-00, http://www.proposicion.org.ar/proyecto/leyes/5613-D-00/index.html (last modi-
fied Jan. 7, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 379

a. Security, Stability, and Privacy

Many of the government efforts to promote open source are based on
the claim that open-source software is more secure or stable than
proprietary software. For example, the German government claims that
Linux is one of the most stable and secure operating systems since it
allows developers to examine the source code, check for problems, and
correct problems more quickly.246 A meeting on “Open Source Software
in Public Administration” presented the view that knowledge of source
code is a fundamental prerequisite for the protection of systems and
networks (e.g., against viruses).247 In its resolution on “Germany’s
Economy in the Information Society,” the Bundestag stated that open-
source software is characterized by stability and high security.248 A
related concern is that “some versions of Windows contain backdoors
designed to grant the U.S. National Security Agency access to users’
data”249 which would compromise users’ privacy.

b. Cost Savings

Some government-sponsored studies have claimed that using open
source saves money. German experts said the use of open-source soft-
ware in public administration would save the federal government �130
million and �2.6 billion countrywide.250 In July 2001, the State Secretary
in the Federal Ministry of Economics and Technology said that Linux
was “more stable, cheaper, more customisable and more secure” com-
pared to proprietary software.251

c. Independence

On various occasions, the German government has expressed its
concerns about the administration’s dependency on single software

246. See Zusammentassung der Rede der Staatssekretärin Brigitte Zypries [Resume of

the Speech of Secretary of State Brigitte Zypries], http://linux.kbst.bund.de/auftakt/vortraege/
zypries/ (Jun. 8, 2000).

247. See id.
248. See Open Source Software im Parlament [Open-source software in Parliament],

http://linux.kbst.bund.de/bundestag/bt-pp14.199.html (last modified Nov. 16, 2001).
249. Rick Perera, German Parliament Considers Linux Switch, ITWorld.com, Oct. 16,

2001, at http://www.itworld.com/Comp/2384/IDG011016germanlinux/pfindex.html.
250. See Ein kühner Plan: Linux statt Windows [A Bold Plan: Linux Instead of Win-

dows], Oct. 7, 2001, http://teamx.cc/news_2002_2.htm.
251. See Bundesregierung gegen “Monokultur” bei Software [Federal government

against monoculture with respect to software], Heise Online, Jul. 5, 2001, http://
www.heise.de/newsticker/data/odi-05.07.01-000/.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

380 Michigan Telecommunications and Technology Law Review [Vol. 9:313

providers. The State Secretary in the Federal Ministry of Interior Affairs
stated in July 2001 that dependence on a single software provider makes
systems more vulnerable, and that the federal government would try to
reduce its dependence on single software providers by adopting open
source.252 At the regional level, Mrs. Harms, a Green Party Member of
the Lower Saxony regional Parliament, stated that a Linux platform
complemented with open-source and commercial products should relieve
the dependence on a single provider.253

d. Innovation

A number of the proposals to assist open source have claimed that
open source is more innovative than proprietary software. The European
Commission’s IDA study stated that “OSS in general and GPL in par-
ticular permits a greater rate of innovation, with greater efficiency.”254 For
example, in the Spirit Project, partially funded by the European Com-
mission’s Fifth Framework Programme and established to “accelerate
the uptake of open source solutions in European health care,”255 it was
mentioned that “[t]he open source approach plays a key role in accelerat-
ing the evolution and uptake of best practice solutions in health care. It
also stimulates innovation and evidence-based review.”256 On a national
level, in its government-commissioned study on patent protection of
software products, the Fraunhofer Institute and Max-Planck-Institute
stated “[t]he further development of Open Source as a kind of public
good, that on principle is available for use by all economic units and thus
in the sense of the new growth theory promotes the general technical
progress and therefore innovation dynamics, is perceived to be in special
danger.”257 Professor Lessig, whose views we discuss both above and

252. See Federal Ministry of Interior Affairs, Linux-Tag: Abhängigkeit von Softwareher-

stellern verringern [Linux-day: Reduce Dependency on Software Producers], Die Welt, Jul.
6, 2001, http://www.bmi.bund.de/top/dokumente/Rede/ix_47733.htm.

253. See Lower Saxony Parliament, Niedarsächsischer Landtag—14. Wahlperiode,
Drucksache 14/1492 at 1 (Aug. 2, 2000) (reporting a brief question by Deputy Frau Harms),
http://www.landtag-niedersachsen.de/Drucksachen/Drucksachen_14_2500/1001-1500/14-
1492.pdf.

254. Schmitz, supra note 215.
255. Bud P. Bruegger, et al., SPIRIT—Accelerating the Uptake of Open Source in

Healthcare, at http://www.sistema.it/LinuxAfrica2001/ (last visited May 9, 2003).
256. Id.
257. Knut Blind et al., Micro- and Macroeconomic Implications of the Patentability

of Software Innovations. Intellectual Property Rights in Information Technologies between
Competition and Innovation 6, http://www.sicherheit-im-internet.de/download/ softwarepat-
entstudie_e.pdf (Sept. 2001).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 381

below, has also based his support on the proposition that open-source
software has been innovative.258

e. Competition

The German government has argued that open source plays an im-
portant role in stimulating competition. Margaret Wolf, State Secretary
in the Federal Ministry of Economics and Technology, noted that open-
source software played an important role in bringing competition to the
software market.259 Along the same line, the audit study presented to the
Budget Committee of the regional parliament of Schleswig Holstein
stated that Linux and Linux-compatible applications should bring more
competition into the IT arena.260 The Commission’s 2001 IDA study also
noted the proposition that open source would help competition. The
study argued that governments could require the use of open source
without running afoul of European competition laws because doing so
promotes “technical or economic progress, allowing consumers a share
of the resulting benefits.”261

f. Helping Domestic Industries and
Other Nationalistic Motives

The German government’s national interest has yet another argu-
ment in favor of open source. As Professor Lutterbeck stated in his
report commissioned by the Federal Ministry of Economics and Tech-
nology, “new and not yet discussed in Germany are the figures of the
worldwide occurrence of open-source developers. They show that Ger-
man developers form the second largest group. On the whole, European
developers are predominant.”262 He concluded that the open-source area
not yet dominated by the United States is of great economic importance

258. See Lessig, supra note 7, at 56–57.
259. See Bundesregierung gegen “Monokultur” bei Software, Heise Online, Jul. 5,

2001, at http://www.heise.de/newsticker/data/odi-05.07.01-000/.
260. Beratende Stellungnahme des Landesrechnungshofs Schleswig- Holstein zur In-

formationstechnik der Landtagsverwaltung [Audit Study of the State Court of Audits
Schleswig-Holstein on the Information Technology of the State Parliament Administration],
Doc. No. LRH Pr 1255/2000, at 13, Oct. 31, 2000 [hereinafter Beratende], http://
www.lrh.schleswig-holstein.de; Deliberation of the Issue in the Budget Committee of the
Regional Parliament 11–13, Jan. 18, 2001, http://www.sh-landtag.de/infothek/wahl15/
aussch/finanz/niederschrift/2001/15-033_01-01.pdf.

261. Schmitz, supra note 215, at 68.
262. Bernd Lutterbeck et al., Security in Information Technology and Patent Protection

for Software Products: a Contradiction? 4 (2000), http://www.sicherheit-im-internet.de/
download/BMWi_Gutachten_englisch.pdf (last visited May 18, 2003).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

382 Michigan Telecommunications and Technology Law Review [Vol. 9:313

for Germany.263 In its resolution on “Germany’s Economy in the Informa-
tion Society” on November 9, 2001, the German Bundestag also stated
that open-source software should be considered a special opportunity for
the European software industry and should not be missed.264

Helping domestic programmers was also explicitly stated as “one of
the big reasons” for the GPL mandate in Venezuela.265

g. Ideological

Most recent open-source software seems to be developed under the
GPL. This is due to FSF’s influence, whose motivation in developing
and supporting the GPL is purely ideological. Some of the justifications
provided for government policies in support of open source echo these
sentiments.

For example, in his recent address to the Brazilian Congress, Rich-
ard Stallman stated, “I find in Brazil considerable awareness that free
software is a social and political issue as well as a practical and eco-
nomic one. The programmers and users that I have met here are very
receptive to the ideas of freedom that free software represents.”266

As one of the reasons for supporting open-source software, the
European Working Group on Libre Software (created at the initiative of
the Information Society Directorate General of the European Commis-
sion) stated that it “provides a new forum for democratic action.”267

Politics was one of the reasons for the Venezuelan government’s
recent mandate for governments to use GPL software. The government
was urged by an advisory group that included Linux developers and
users.268 If the government had been interested solely in helping domestic
programmers, it could have mandated that the software in question either
be in the public domain or have any one of several licenses. For example,
in addition to allowing the GPL, the mandate might have accepted

263. Id.
264. Antrag [Proposed Legislation] under Deutscher Bundestag Drucksache 14/5246 at

5, Jul. 7, 2001, http://dip.bundestag.de/btd/14/052/1405246.pdf; Deutscher Bundestag
Plenarprotokoll 14/199 [Federal Parliament Minutes 14/199] at 19577, Nov. 9, 2001
(approving proposed legislation), http://dip.bundestag.de/btp/14/14199.pdf.

265. Proffitt, supra note 238.
266. Stallman Addresses Brazilian Congress, supra note 6.
267. Working Group on Libre Software, Free Software / Open Source: Information Soci-

ety Opportunities for Europe? Version 1.2 (Apr. 2000), http://eu.conecta.it/paper.pdf (last
visited May 18, 2003).

268. Proffitt, supra note 238.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 383

software licensed under the LGPL, the BSD license, or other non-
restrictive licenses—not just the ideology-based GPL.

C. Economic Arguments for Helping Open Source

Economic arguments for helping open source are based on the prem-
ise that open source is “better” in some ways and therefore the
government should help promote it. In theory, two sorts of arguments
might be made. One is that open source is superior and should be used
more by prudent purchasers, and the government is no different from
business. The other is that open source could provide various economic
benefits if successful, so government should give it a boost.

In practice, these arguments tend to blur. Professor Lessig, for
example, writes:

What reason does the government have for supporting closed
code, when open code is as powerful and the externalities from
using open code would benefit others? If the PCs that the gov-
ernment owned ran something other than Windows, then the
market for these alternative platforms would be wildly ex-
panded. And if the market for alternatives were strong, then the
benefits from building for these alternatives would be strong as
well.269

His argument begins with the premise that open source is as good or
better than proprietary software and ends with the conclusion that the
government should promote open source. Here and in his other writings,
Professor Lessig seems to be doing more than advising the government
on how to run its IT department.270 He seems to be suggesting that the
government should use open-source software in ways that one would
never suggest for a profit-maximizing business. Professor Lessig’s pas-
sage, though, may be based on a market failure concept to which we
return below.

The economic arguments for promoting open source are often
similar admixtures of claims about the superiority of open-source
software and assertions about the munificent effects of government help.

269. Lessig, supra note 7, at 247.
270. See, e.g. Lawrence Lessig, Code and Commons, Keynote at the Conference on Me-

dia Convergence (Feb. 9, 1999) (transcript available at http://cyberlaw.stanford.edu/lessig/
content/articles/works/fordham.pdf; Lawrence Lessig, May the Source Be with You, WIRED,
Dec. 2001, http://www.wired.com/wired/archive/9.12/lessig_pr.html.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

384 Michigan Telecommunications and Technology Law Review [Vol. 9:313

We begin with the premises and then turn to the claims that government
assistance is needed.

1. Claims about the Superiority of Open-Source Software

a. Innovation

As we discussed above, there is no basis for claiming that open-
source software has generally been more “innovative” than proprietary
software. Most of the proposals for assisting open-source software have
been aimed at Linux and related software for client computers, which
generally have been released under the GPL.271 Much of the software
released under the GPL has been, intentionally, imitative of proprietary
software. Many of the GPL projects underway involve further efforts to
copy proprietary software. The open-source products with the strongest
claims to being innovative have been released under BSD-style licenses.
A general claim, however, that open source is more innovative that pro-
prietary software cannot be made.

b. Security and Privacy Concerns

Claims by its proponents that open-source software is inherently
more secure than proprietary software have at least a veneer of plausibil-
ity: the more eyeballs that are looking for security problems, the higher
the probability that problems will be identified and solved. We take no
position on whether this argument is correct. We do note, however, that
not everyone agrees with this view. There may, in fact, be no particular
reason to believe that more eyeballs actually are looking for security
problems with open source.272 Some commentators have asserted that
widespread attacks on Windows computers connected to the Internet are
motivated as much or more by the ubiquity of these computers as by
their security problems.273

271. See, e.g., Richard Stallman, UNESCO and Free Software, UNESCO Free Software

Portal, at http://www.unesco.org/webworld/portal_freesoft/stallman_011001.shtml (last
updated June 26, 2001). This article addresses UNESCO’s support of Free Software
Foundation that promotes GNU/Linux system[s].

272. Robert Lemos, Too Much Trust in Open Source?, ZDNet News, Mar. 20, 2002, at
http://zdnet.com.com/2100-1104-864256.html; Wayne Rash, Proprietary Apps Have Security
Problems—But So Does Open Source, ZDNet News, Apr. 4, 2002, at http://zdnet.com.com/
techupdate/stories/main/0,14179,2857736,00.html.

273. See, e.g., Mitch Wagner, Virus Attacks Linux, Windows Systems, Internet-
week.Com, Mar. 30, 2001, at http://www.internetwk.com/story/INW20010330S0007.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 385

Claims that open-source software is more protective of privacy than
is proprietary software also have some theoretical plausibility. In theory,
proprietary software has the potential to watch a user and transmit usage
data back to the software vendor for marketing or other purposes. In
practice, open source cannot easily do this, since a skilled programmer
who noticed such behavior could excise the code from an open-source
program. Similarly, encryption software could theoretically have a
“backdoor” that would let those in-the-know decrypt supposedly secure
information; again, a skilled programmer could excise such code from an
open-source program. Such claims are difficult to evaluate. It is certainly
true that open source can generally avoid potential privacy and security
problems like these. There is little evidence that proprietary programs
actually engage in such activity.274 Much of the argument seems based on
speculation (what could happen) rather than fact (what does happen).275
Proprietary software producers, it should be noted, have strong financial
incentives not to intrude on the privacy or compromise the security of
their licensees. If such behavior became known, people would seek other
software.

c. Cost Savings

We note that profit-oriented firms in the private sector tend to use
proprietary software extensively in some situations (particularly for cli-
ent computers), with open-source software being relatively more popular
on servers than on clients. This client-side preference for proprietary
software strongly suggests that, despite the client-side cost savings (at
least acquisition costs, if not training and support costs), open source
generally has been inadequate in overcoming the technical advantages of
proprietary software. Where formal studies have been conducted, the
results have not always been conclusive. For example, the audit study
presented to the Budget Committee of the regional parliament of
Schleswig Holstein in Germany stated that adoption of OSS where no
license costs were paid might lead to substantial cost savings. However,

274. Ad-supported programs are an exception: users generally should assume that they en-

gage in exactly this type of activity. Reports of “spyware” or “sneakware” in file sharing
programs such as Kazaa have also surfaced recently. See, e.g., John Borland & Rachel Konrad,
PC Invaders, CNet News.Com, Apr. 18, 2002 at http://news.com.com/2009-1023-885144.html.

275. For example, assorted parties long suspected that the National Security Agency in
the United States had put such a backdoor into the DES encryption method before authorizing
its use in the 1970s. There is no evidence, however, that such a backdoor ever existed. See
Steven Levy, Crypto: How the Code Rebels Beat the Government, Saving Privacy
in the Digital Age 38–39, 56, 60–64 (2001).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

386 Michigan Telecommunications and Technology Law Review [Vol. 9:313

other costs such as training, setup, support and development should be
taken into account. The study concluded that there was no clear eco-
nomic winner.276

2. Arguments for Promoting Open Source

The less sophisticated argument for promoting open source is that it
is “good” so let us have more. The more sophisticated argument is that
government assistance for open source will increase competition for
proprietary software (particularly Windows) and thereby benefit society
through externalities. We consider each in turn.

a. Promoting Open Source because It Is “Better”
than Proprietary Software

Some of the arguments for government promotion of open-source use
seem to be based on nothing more than the observation that open-source
software has certain features that are claimed to be superior to proprietary
software. For example, in November 2001, Michel Sapin, the Minister of
Public Services in France, stated, “Les deux exigences de la deuxième
étape de l’administration électronique sont donc l’interopérabilité et la
transparence. Ce sont justement les deux points forts des logiciels libres.”
(“Next generation e-Government has two requirements: interoperability
and transparency. These are the two strengths of open source software.”)277
Mrs. Zypries, a state secretary in Germany, stated during a meeting on
“Open Source Software in Public Administration” that the knowledge of
code is a fundamental prerequisite for the protection of systems and
networks.278 To the extent that open-source software is better than pro-
prietary software in meeting government IT needs, one could hardly
object that the government should use open source. But the amount of
interest in touting the advantages of open-source software and the occa-
sional attempt to legislate the use of open source implies that more is
going on here than a simple technical debate.

276. Beratende, supra note 260; Deliberation of the Issue in the Budget Committee of

the Regional Parliament, supra note 260.
277. Michel Sapin, Address at the Opening of the Second Meeting on Free Software in

the Administration (Nov. 15, 2001), available at http://www.fonction-publique.gouv.fr/
communications/discours_archives/discours-200111151520.htm.

278. See Zusammenfassung der Rede der Staatssekretärin Brigitte Zypries [Summary of
the Speech of State Secretary Brigitte Zypries], Koordinierungs-und Beratungsstelle der
Bundesregierung für Informationstechnik [Federal Agency for the Coordination and Advice on
Information Technology], http://linux.kbst.bund.de/auftakt/vortraege/zypries/ (speech at the
University of Applied Science [Fachhochschule] of the Federation, Brühl on Jun. 8, 2000).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 387

We make several observations. First, there is no basis for claiming
that open source is generally superior to proprietary software. We saw
earlier that both approaches have advantages and disadvantages. One
would need to evaluate open-source software and proprietary software
on a case-by-case, product-by-product basis. That open-source software
has seen greater relative successive on servers than on clients strongly
suggests that users make exactly those kinds of comparisons. Second,
there is no basis for claiming that an advantage of any particular open-
source program over a proprietary counterpart will persist. As we saw
above, there is nothing intrinsic in open-source software that ensures that
it will be more secure than proprietary software. Third, there seems to be
a suggestion that because there is something “good” about open source
(better security, it is free, etc.) the government should do something to
promote this “good.” Such reasoning is faulty. The market will veer to-
ward open-source software solutions if they are superior, so there is no
reason why the government needs to push the market in that direction.
As we have noted earlier, governments have bad track records at picking
technology winners and losers.

The potential for “innovation” by open-source software is not, by it-
self, a sensible economic reason for favoring open source. A private firm
deciding what mix of software will best meet its needs over a relevant
time horizon would care about which of the specific products and tech-
nologies are most cost-effective over that time horizon; the firm would
not care whether some production method tends over the long run to be
more “innovative” than another.

b. Promoting Open Source to Increase Competition

As noted above, some people have argued that governments should
use Linux to provide competition to Microsoft. In some cases, this ar-
gument is based on giving the government another source of competitive
supply (much like second-sourcing for any business). In other cases, the
argument is based on the government’s helping to create a competitive
alternative to Microsoft, thereby benefiting society generally. We believe
that this argument, although ultimately fallacious, is one of the most
promising. Let us develop the argument a bit before we discuss the prob-
lems.

Many businesses ensure that they have at least two suppliers. That
provides several advantages. First, it provides a supply source if one
vendor cannot perform. For example, a business that requires a critical
component may not want to risk running out of that component so it will
retain a second supplier as back up. An explanation like this can hardly

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

388 Michigan Telecommunications and Technology Law Review [Vol. 9:313

apply to a software supplier, since capacity and manufacturing problems
are not relevant for software.

Second, it ensures supply competition; the availability of a second
supplier can help discipline the prices of the first. Indeed, it is theoreti-
cally possible that a company would be willing to pay a higher price or
accept a lower-quality product just to get the benefits of second source.
This argument makes sense only when the company would not have ac-
cess to the second supplier if it did not second source, which for
software could happen only if the second supplier could not remain in
business without the second-source contract. If the second supplier
would be available anyway, then the business can always just take bids
and select the best supplier. By the same reasoning, one might argue that
it makes sense for governments to use Linux operating systems even
when they are not the most cost-effective choices on more narrow eco-
nomic grounds. Moreover, one might argue that government
procurement of open-source software could help ensure the survival of
long-run competitive alternatives to proprietary software in general and
Windows in particular.

There are several problems with this argument. The most fundamen-
tal problem is that procurement policies seem unlikely to be useful in
supporting the development of open source, due to the non-market orien-
tation of its development. When the source code for a product is freely
available, there can be no economically significant entry barriers into the
business of “supplying” that product to potential users. In such a situa-
tion, “buying” an open-source product (or support for the product) pays
for the distribution costs (and the support costs) but nothing more, due to
competition for distribution of the product. This problem arises regard-
less of the motivation underlying the procurement preference.

Another problem is more specific to competition between Linux and
Windows. One must distinguish between the use of these products on
servers and on clients. In the case of servers, Microsoft is not the domi-
nant supplier of operating systems. Based on shipments (hardware plus
software revenues), Microsoft’s share of servers was 23 percent in
2000.279 Microsoft’s share has increased over the years as the price-
performance characteristics of its server operating system has improved.
This has provided price and innovation pressure on the other server
software competitors, such as Novell, IBM and Sun. Linux has also done

279. IDC Server Tracker database, Q196-Q302, at http://www.idc.com (last visited Nov.

26, 2002).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 389

quite well in gaining server installations. Its share of server shipments
stood at 3 percent in 2000, up from 1 percent in the previous year.280 We
do not see any basis other than merit for having the government choose
Linux operating systems for its servers.

Microsoft does, however, have a very large share of client operating
systems. On single-user computers, its share of new shipments was 93
percent in 2000.281 Some might argue that it makes sense to try to de-
velop a competitive alternative. There are several problems with having
governments do that:

1. Short of most governments agreeing collectively to support
Linux, no single government—even the U.S. government—
purchases enough client operating systems to have much ef-
fect on Linux’s success; moreover, as discussed above,
procurement policies seem particularly ill-suited for promot-
ing the development of open source.

2. The open-source software method appears unlikely to serve
consumer needs on the client side. Unlike server operating
systems, which are often maintained by technically adept
individuals, client operating systems are generally used by
technically unsophisticated individuals. As we discussed
earlier, the open-source production method does not have
any mechanism or incentives for designing software for the
masses.

3. There is no apparent reason why Linux should be the “sec-
ond source” alternative if there is to be one. The Macintosh
OS or OS/2 could be better potential choices. There are al-
ready applications written for them, and they are produced
by proprietary companies that have the incentives, and
knowledge, to produce consumer-oriented software.

4. There are benefits to standardizing client-side software. As
mentioned above, many types of software (including client
operating systems and some categories of client applica-
tions) exhibit “network effects.” Users gain when their
knowledge of user interfaces, program capabilities, and the
like can be readily transferable. Deliberately avoiding

280. Id.
281. Al Gillen et al. IDC Report #25118, Worldwide Client and Server Operating Envi-

ronments Market Forecast and Analysis Summary, 2001–2005, Table 2, p. 12 (Aug. 2001).

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

390 Michigan Telecommunications and Technology Law Review [Vol. 9:313

widely-used software reduces these consumer benefits. If a
large government customer shifts its use of operating sys-
tems from one to another, it will increase the general
public’s network effects for its new operating system, but it
will necessarily reduce the network effects for remaining us-
ers of its former operating system. If the new operating
system started with a smaller network than the old, then the
total network effects are likely to decline with such a switch
(unless the new operating system actually is superior to the
former one. In this case, there is unlikely to be any need for
government policy, as the market is likely to switch on its
own).

Let us now return to Professor Lessig’s suggestion that the govern-
ment use open source.282 Filling in his thoughts, the argument seems as
follows: if the government promotes the Linux operating system, that
would increase the share of computers running the Linux operating sys-
tem; more applications would be written to run on the Linux operating
system; there would be more competition for Windows; and consumers
therefore would be better off. This argument could be made for many
products with network effects that the government uses, from telecom-
munications systems to credit cards. Professor Lessig provides neither
theory nor fact supporting government aid of this particular product—
Linux (or any other open-source software product)—and our discussion
above shows why such government efforts would be neither prudent nor
successful.

D. Releasing Software R&D Under the GPL

Some governments, such as in the United States, have long provided
support for software R&D through universities and government research
laboratories. In general, government sponsorship of R&D efforts, for
other industries as well as software, is justified as overcoming market
failures and providing beneficial externalities.

In this article, we do not address the issue of whether such R&D
support for software is good public policy. We do, however, address the
issue of whether R&D support for GPL software is good public policy.

In the past, U.S.-sponsored software research either went into the
public domain, remained in the hands of the military, or was spun off for

282. Lessig, supra note 7, at 247.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 391

commercial purposes.283 We make no claims about specific products but
note that the Internet arose from U.S.-sponsored research. Whatever
policies were in place at the birth of the Internet (which notably did not
include sponsoring GPL software), they seem to have succeeded techno-
logically.

In recent years, however, substantial government R&D support has
been directed at GPL software. For example, NASA developed the origi-
nal Beowulf clustering software for Linux, released under the GPL.284
More advanced clustering software was developed at Sandia National
Laboratories, also released under the GPL.285 The next version of the
Reiser File System is sponsored primarily by the Defense Advanced Re-
search Projects Agency (DARPA) and will be licensed under the GPL.286
And, in April 2002, Sandia National Laboratories released its “DAKOTA
Toolkit” under the GPL.287

There seems to be no economic justification for this support of the
GPL. In other areas, universities and government research laboratories
have been encouraged over the past 20 years to spin off research into
commercial products, particularly through the licensing of patents that
emerge from their research.288 If such policies are appropriate for other

283. For example, throughout the 1960s the Advanced Research Projects Agency

(ARPA), which was part of the Department of Defense, conducted research on communica-
tions. In 1969, it created a network of computers called ARPANet, which was designed to
allow continued communications in the event of a nuclear attack. ARPANet and related re-
search formed the basis for today’s Internet. The National Science Foundation (NSF), which
maintained the main Internet backbone and subsidized domain names, first allowed use of
NSFNet for commercial purposes in 1991 and fully shifted its responsibilities to the private
sector in 1995. See National Science Foundation, supra note 180.

284. See NASA at Goddard Space Flight Center, Beowulf at NASA/GSFC, at
http://beowulf.gsfc.nasa.gov/ (last modified Apr. 24, 2000). See also, Sterling, supra note 5.

285. Laboratories Support, Facilities, and Human Resources, 54 Sandia Lab News
(2002), at http://www.sandia.gov/LabNews/LN02-22-02/LA2002/la02/support_story.htm (last
modified Feb. 28, 2002).

286. Reiser, supra note 128.
287. Sandia National Laboratories Press Release, Sandia’s DAKOTA Toolkit on Web and

Available for Free (Apr. 8, 2002), http://www.sandia.gov/media/NewsRel/NR2002/
DAKOTA.htm.

288. The Patent and Trademark Law Amendments Act (also known as the Bayh-Dole
Act) of 1980 encouraged universities and small businesses to commercialize inventions by
permitting exclusive licensing of intellectual property that was developed with public funding.
In exchange for the right to elect title to an invention, the licensor must agree to properly man-
age the invention and provide reports to the government. Since the passage of Bayh-Dole,
universities have increasingly set up technology transfer programs and actively patented and
commercialized inventions. See Council on Government Relations, The Bayh-Dole Act: A
Guide To The Law and Implementing Regulations (Sept. 1999), at http://216.239.51.100/

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

392 Michigan Telecommunications and Technology Law Review [Vol. 9:313

fields, there is no reason to believe that they are inappropriate for soft-
ware. The justification for such policies is essentially that firms with
intellectual property rights will have profit incentives to develop prod-
ucts and services that others will value. Support of GPL projects is
incompatible with commercial spin-off efforts, since the GPL is incom-
patible with proprietary, commercial software.289

If, for some reason, the standard commercialization approaches ap-
propriate for other fields of research are inappropriate for software R&D
(and we know of no such reasons), then licenses less restrictive than the
GPL, such as the BSD license or even the public domain, would seem
appropriate. They let anyone use the software in any ways they choose;
in contrast, the GPL sharply restricts the ways in which the software can
be used. As noted above, the GPL is sometimes claimed to be more ap-
propriate than other license types for a software “cooperative,” because it
might possibly encourage more “sharing” behavior among the coopera-
tive members. But that argument cannot apply to government-sponsored
R&D, which is getting funding from the government and is not part of a
user “cooperative.”

We argue here that it is bad public policy for the government to sup-
port software R&D that is licensed under the GPL. In an extended
endnote, Lessig appears to disagree with this position; he presents what
he claims are arguments advanced by others in support of our position
(although not the arguments we present here), and he then rejects
them.290 He characterizes these arguments by others as: “Government
funds should not promote a coding project that is not wholly free for
anyone to take and do with as they wish.”291 He then rejects the putative
argument he has presented: “This is not an argument against open
source, it is an argument against GPL. And if it is a strong argument
against GPL, then it is also an argument against the government support-
ing proprietary projects as well.”292

We disagree. Software released under a BSD-style license (or into
the public domain) can indeed by used readily by others. The owners of
proprietary software have profit incentives to make sure that their tech-
nology gets used in ways that consumers value. In both of these cases,

search?q=cache:PaG-7h5QdxEJ:www.cogr.edu/docs/Bayh_Dole.pdf+The+Bayh-
Dole+Act:++A+Guide+To+The+Law+and+Implementing+Regulations+&hl=en&ie=UTF-8.

289. Indeed, the GPL is incompatible with any assertion of patent rights.
290. Lessig, supra note 7, at 329–330.
291. Id.
292. Id.

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

Spring 2003] Promoting Open-Source Software 393

parties that highly value the results of that R&D can make use of it in
their own products. That is not true of software released under the GPL;
only other GPL software can make use of it.

The oddity of government sponsorship of R&D for GPL projects can
be seen by drawing an analogy with, for example, sponsorship of biotech
research. Suppose that the government required that all biotech patents
issued under sponsored research be put into a special patent pool.
Suppose further that the patents in this pool could be relied on by
anyone, for any purpose, with one condition: if products or processes
were developed (to any extent whatsoever) under these patents, then all
other patents on which these products or processes relied also had to be
added to the special patent pool. The obvious outcome of such an
arrangement would be that for-profit firms would avoid relying on
patents in the special patent pool and would donate few, if any, patents to
the pool. The U.S. government does not fund pharmaceutical research in
ways that prevent the use of that research by firms making proprietary
products. But funding R&D for GPL software has exactly that effect in
software—preventing its use by firms making proprietary products.

In short, the economic justifications for government support of R&D
seem no different for software than for other industries. The economic
reasoning that leads the government to favor commercialization of R&D
results in other industries applies equally well to software. If for some
reason software is deemed to be different, then government policies
should favor releasing R&D software research into the public domain or
under BSD-style licenses, to permit their widespread use.

Part VII. Conclusions

We are aware of no general market failure that governments have
identified in the provision of commercial software. Yes, software has
somewhat unusual characteristics, but so do other industries based on
intellectual property. And the commercial software industry has grown
enormously over the last few decades, providing ever more powerful,
easy-to-use software to more users. Open-source software in general has
had some successes, but GPL software to date has seen relatively few
hits, and those seem mostly imitative.

We are also aware of no compelling evidence that governments have
special expertise in analyzing the software industry to effect solutions
that will improve the situation. It is perhaps human nature for bureau-
crats (and economists) to believe that they can improve upon the
operation of markets with strange characteristics. In general, however,
we believe that humility is in order. The last 20 years have shown that

EVANS-REDDY 5-17TYPE.DOC 6/2/03 1:22 PM

394 Michigan Telecommunications and Technology Law Review [Vol. 9:313

governments have no particular skill in choosing industries to support as
part of “industrial policy” initiatives. We see no reason to believe that
governments would be any better at designing new and improved soft-
ware industries.

It is difficult to know what to make of statements like the following:
“Likewise with the government’s choice of operating systems. What rea-
son does the government have for supporting closed code, when open
code is as powerful and the externalities from using open code would
benefit other users?”293 Whether “open code” in any given situation is
actually “as powerful” as “closed code” is an everyday business judg-
ment that should be made by businesses, governments, and private users;
it does not strike us as a policy issue that should be decided by bureau-
crats or legislators, or even by lawyers and economists.

Moreover, we are highly skeptical of the “externalities” claim. To the
extent that these “externalities” arise from use (e.g., network effects dis-
cussed above), we see no reason to believe that they are more important
for “open code” than “closed code.” As discussed above, a switch to in-
crease the “externalities” that benefit other users of open source
necessarily decreases the “externalities” of the remaining users of pro-
prietary software. The net effect is likely to be a reduction in the total
“externality” benefits of software.

To the extent that the externalities arise from R&D efforts, then pur-
chase preferences seem to be the wrong tool. Direct support of software
R&D (preferably not under the GPL) would be the appropriate policy if
such externalities are considered important. Purchase preferences for
open source seem particularly ill-suited for encouraging the development
of open source software. Given that the competitive price of open-source
software is, in effect, zero, we know of no empirical (or theoretical) evi-
dence that government use of “open code” operating systems will
increase basic software R&D.

293. Lessig, supra note 7, at 247.

