
CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

191

NOT ALL BAD:
AN HISTORICAL PERSPECTIVE

ON SOFTWARE PATENTS

Martin Campbell-Kelly*

Cite as: Martin Campbell-Kelly, Not All Bad: An Historical
Perspective on Software Patents,

11 Mich. Telecomm. Tech. L. Rev. 191 (2005),
available at http://www.mttlr.org/voleleven/campbell-kelly.pdf

This Paper places the current debates about software patents in
the historical context of patenting in the information technology
industries.

The first computer-program products were sold in the mid 1960s
when software patents were not generally allowed; as a result,
trade secrecy became endemic to the software industry. Software
products were also protected by copyright, but in practice this
offered little protection against most forms of appropriation by
reverse engineering or cloning. By the early 1980s a series of
landmark cases led to the acceptance of software patents. It is
argued that this development was consistent with the patenting
of algorithmic inventions that long predated the invention of the
computer. In the 1990s, business method patents were accepted.
Again, it is argued that this development was consistent with the
“virtualization” of inventions that long predated the Internet. It
is shown that patents offer similar benefits to the software indus-
try as for other technological industries, as well as some old and
new disadvantages.

The Paper draws three main conclusions. First, from an histori-
cal viewpoint, software patents are not radically different from
those of other technologies; the patent system has adapted to the
particular demands of new technologies over time, and the soft-
ware patent system is already making such adaptations. Second,
patents are superior to the alternative IP regimens of trade se-
crecy and copyright, primarily because of the public benefits of
disclosure. Third, patents offer the most economically efficient
way of co-ordinating multiple R&D investments in major soft-
ware technologies.

 * Martin Campbell-Kelly is a professor in the Department of Computer Science,
Warwick University. He is a historian and computer scientist with a special interest in the
history of information processing. His most recent book is From Airline Reservations to
Sonic the Hedgehog: A History of the Software Industry (2003).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

192 Michigan Telecommunications and Technology Law Review [Vol. 11:191

 I. Broadening the Debate—The Benefits and
Costs of Patents... 195
A. Patents Motivate Invention .. 196
B. Patents Induce Disclosure and Wide Use

 of Inventions ... 198
C. Patents Induce the Development and

Commercialization of Inventions....................................... 199
D. Patents Enable Orderly Development of

Broad Prospects .. 201
 II. Before There Was Software: Patents in the Early

IT Industry .. 202
 III. The First Software Products .. 210
 IV. Algorithms, Software Patents and the

Virtualization of Inventions.. 215
 V. The Limits of Copyright Protection and the

Rise of Trade Secrecy.. 221
 VI. Patents and Disclosure .. 226
 VII. Business Method Patents ... 231
 VIII. Broad Prospects and Reverse Salients............................ 235
 IX. The Software Patent Thicket... 240
Conclusion ... 246

Software patents are controversial. The current debate on software

patents is taking place in two, largely mutually exclusive forums. First
there is a lively discussion on the Internet, generally hostile to software
patents, which is conducted principally by members of the open-source
software community and small and medium-sized enterprises (SMEs).
Second, there is a scholarly debate in the peer-reviewed academic litera-
ture, in which all shades of opinion are represented, from strongly pro
patent to adamantly anti-patent.1 These two forums represent a “digital
divide” somewhat different than the usual meaning of the phrase. Most
of the online debate about software patents takes place outside academia
by individuals with little access to the academic literature on the subject.
As a result the Internet debate is often selective, anecdotal, rhetorical,
and rarely meets the standards of rigor that would be required of a peer-
reviewed publication.

The principal criticism of software patents is that they are inappro-
priate because software is a cumulative technology, proceeding by
sequential innovation. A software product typically builds on tens or
hundreds of previous innovations. Opponents of software patents argue

 1. For historical background and bibliography, see Stuart J.H. Graham & David C.
Mowery, Intellectual Property Protection in the U.S. Software Industry, in Patents in the
Knowledge-Based Economy 219, 219–58 (Wesley M. Cohen & Stephen A. Merrill eds.,
2003).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 193

that patent “thickets” will necessarily impede the flow of new software
products. In 1992, Richard Stallman and Simson Garfinkle, two vocifer-
ous software patent critics, wrote, ”Soon new companies will often be
barred from the software arena—most major programs will require li-
cences for dozens of patents, making them infeasible.”2

Since this prediction, more than a decade has passed and tens of
thousands of software patents have been issued.3 However, the number of
software firms—currently at least 35,000—shows no sign of diminish-
ing.4

The aim of this Paper is to put software patents, and alarmist predic-
tions, into a historical context. For example, software is far from unique
as a sequential technology with strong network effects. The software and
computer industries developed from the office machine industries that
were established in the last quarter of the 19th century. As discussed be-
low, not only did the office machine industry exhibit sequential
innovation and network effects, it also flourished in an environment of
aggressive patenting.

Although thickets are the principal concern of critics of software
patents, they are not their only anxiety. There is a view that algorithms
and business methods are not proper subject matter for patents. History
tells us differently. Critics argue that copyright provides sufficient pro-
tection for software—again, history tells another story. It is argued that
software patents are too obvious, last too long, and are over broad. There
is plainly substance to these criticisms, but history suggests the solution
may be adjustment rather than abandoning the benefits of patents.

This article is organized as follows. Section 1 frames the debate
about software patents in the context of the more general economic ar-
guments about the benefits and costs of patents. Some brief historical
case studies show that software technologies, and the businesses built
around them, have benefited from the patent system, much as other in-
dustries. Moreover, the disadvantages of patents do not appear to be
more burdensome for software than for other industries. Section 2 dis-
cusses the role of patents in the early office machine industry, the most

 2. Richard Stallman & Simson Garfinkle, Viewpoint: Against Software Patents, Comm.
ACM, Jan. 1992, at 17.
 3. Bryan Pfaffenberger, The Coming Software Patents Crisis: Can Linux Survive?,
Linux J., Aug. 10, 1999, available at http://www.linuxjournal.com/article/5079.
 4. There are no reliable estimates of the number of software firms globally. The au-
thors of Secrets of Software Success cite two estimates for the total number of firms in the
software industry worldwide—one source states 35,000 firms with more than five employees,
while another states 150,000 “regardless of their size.” Detlev J. Hoch et al., Secrets of
Software Success: Management Insights from 100 Software Firms around the
World 38, 276 (1999). For further discussion on this topic, see Campbell-Kelly, supra note
*, at 12.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

194 Michigan Telecommunications and Technology Law Review [Vol. 11:191

direct ancestor of the software industry. It is shown that patents fostered
competition and diverse technologies resulting in a rich ecosystem of
products from which the market could select. Further, it is shown that
office technologies—like software—were sequential and cumulative, but
patents did not inhibit innovation. They did, however, inhibit non-
innovative makers of clone products. Section 3 discusses the origins of
software protection in the 1960s, when the relative benefits and costs of
patents, copyright, and trade secrecy were first addressed. Two historical
case studies show how one firm opted for trade secrecy, while the other
managed to secure a patent. In the first case, society learned nothing
about the technology of this important product because it was main-
tained as a closely held secret for twenty years. In the other case, society
benefited from public disclosure that facilitated the development of rival
products.

Section 4 gets to the heart of software patent controversy, with a dis-
cussion of the patentability of computer algorithms. It is shown that,
although algorithms were not regarded as patentable subject matter until
the 1980s, in practice algorithmic devices, such as cryptographic ma-
chinery, had long enjoyed patent protection. By the 1970s devices with
embedded microprocessors and software algorithms were routinely pat-
ented. Thus the decision to afford protection to pure software inventions
in the 1980s was not so much a radical change as the belated recognition
of an established trend. Section 5 discusses the demise of copyright pro-
tection for programs and the rise of trade secrecy. IP protection through
copyright had generally been adequate for corporate software used on
centralized mainframe computers in the 1960s. However, with the rise of
personal computers and consumer software in the late 1970s, producers
lost trust that copyright would be respected, and increasingly relied on
trade secrecy. The example IBM’s “object code only” policy instituted in
1983, by which it ceased to distribute source code, is described, along
with the use of APIs as a substitute for source code disclosure.

Section 6 argues that a primary benefit of patents is public disclosure
of inventions. Two well known patents, for the LZW data compression
algorithm and the RSA cryptographic algorithm, illustrate that copyright
would have provided these inventions with insufficient protection. Dis-
closure through patents brought far greater benefits to society than trade
secrecy. Section 7 addresses current controversies about business method
patents. A frequently voiced concern is that the web implementation of a
real world process should not merit a patent. The example of virtual
postage meters explored here shows that patents issued for Internet im-
plementations were a logical continuation of a century of patent
protection in this important industry. Moreover, patent protection en-

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 195

couraged new entrants into the postage meter industry, against whom the
incumbents have had to compete.

Section 8 discusses the value of patents in developing broad software
prospects. The examples of software for screen rendering and speech rec-
ognition are used to illustrate how these and other technological “grand
challenges” are being attacked by multiple firms. Patent protection enables
information to be shared among firms, so that duplicate R&D investments
can be avoided. The alternative IP protection regime of trade secrecy pre-
vents information sharing, while copyright is irrelevant in this context.
Lastly, section 9 address the criticism that software patents constitute a
“thicket” that impedes progress. It is shown that, relative to other impor-
tant industries, the number of software patents issued is not excessive. It is
argued that the current concerns about patent thickets are exacerbated by
the poor state of prior art searching, the poorly developed software com-
ponent industry, and the extreme fragmentation of the software industry.
Time will mitigate all of these concerns.

The principal conclusions of the article are three-fold. First, from an
historical viewpoint, software patents are not radically different from
those of other technologies; the patent system has adapted to the particu-
lar demands of new technologies over time, and the software patent
system is already making such adaptations. Second, patents are superior
to the alternative IP regimens of trade secrecy and copyright, primarily
because of the benefits of disclosure. Thirdly, patents offer the most eco-
nomically efficient way of co-ordinating multiple R&D investments in
major software technologies.

I. Broadening the Debate—The Benefits
and Costs of Patents

An Act to promote the progress of useful Arts: The grantee or
grantees of each patent shall, at the time of granting the same, de-
liver to the Secretary of State a specification in writing . . . which
specification shall be so particular [as] to enable a workman or
other person skilled in the art or manufacture . . . to make, con-
struct, or use the same, to the end that the public may have the full
benefit thereof, after the expiration of the patent term.

—Patent Act of 17905

 5. Patent Act of 1790, ch. 7, 1 Stat. 109–112 (1790).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

196 Michigan Telecommunications and Technology Law Review [Vol. 11:191

Much of the debate about software patents is essentially one dimen-
sional, focusing on patent thickets, blocking, and the danger of
inadvertent infringement. Much less is said about the benefits of patents
to society. There is substantial academic literature on the benefits and
costs of patents, and the economists Roberto Mazzoleni and Richard
Nelson have done great service by pulling this literature together and
identifying “four different, broad theories about the principal purposes
patents serve”:

1. Patents motivate invention

2. Patents induce disclosure and wide use of inventions

3. Patents induce the development and commercialization of in-
ventions

4. Patents enable orderly development of broad prospects6

The Mazzoleni and Nelson classification offers a good trade-off be-
tween the one-dimensional debate and the highly detailed academic
literature. The four theories will be explored explicitly and implicitly in
this article, with a preliminary discussion below.

A. Patents Motivate Invention

The motivation-of-invention theory posits that inventors will be en-
couraged by the temporary monopoly provided by a patent, because it
will enhance their chances of profitable exploitation. For example, a
temporary monopoly allows the inventors “breathing space” to mobilize
resources and to undertake negotiations with parties who might help in
the process. By contrast, in the absence of a patent, innovators would be
discouraged because their invention, if commercially successful, would
immediately be appropriated by imitators.

One of the few well documented examples of patents serving this
function in the software industry is provided by Charles Ferguson, the
founder of Vermeer Technologies and creator of the FrontPage web de-
velopment software product.7 In 1993, Ferguson came up with the idea
of a web-authoring program—envisaged as a word-processor for writing

 6. Roberto Mazzoleni & Richard R. Nelson, Economic Theories about the Benefits
and Costs of Patents, 32 J. Econ. Issues 1031 (1998)[hereinafter Economic Theories]. Maz-
zoleni and Nelson are not pro patent, and their arguments are not directed toward software
patents in particular. See also Roberto Mazzoleni & Richard R. Nelson, The Benefits and
Costs of Strong Patent Protection: A Contribution to the Current Debate, 27 Res. Pol’y. 273
(1998) [hereinafter Benefits and Costs].
 7. Charles H. Ferguson, High Stakes, No Prisoners: A Winner’s Tale of
Greed and Glory in the Internet Wars (1999).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 197

web pages. His concept had some novel features and he applied for three
patents.8

Protected by his patents, Ferguson secured $4 million in venture
capital and invested in the development of FrontPage.9 Vermeer Tech-
nologies’ investors had some collateral in the intellectual property of the
patents and the development of FrontPage itself could take place with
the security that “we were first by a wide margin and would assert our
patents against everybody who followed.”10 After the World Wide Web
took off in 1994, Ferguson entered negotiations with Netscape Commu-
nications and Microsoft, who were then competing in the “browser
wars”11 and each needed a complementary product for developing web
pages. The patents enabled Ferguson to engage in full and open negotia-
tions with both companies, with some security that neither would be able
to imitate FrontPage without infringing on Vermeer Technologies’ pat-
ents. Vermeer’s FrontPage was launched in October 1995; Microsoft
acquired the company and its product in January 1996 in a reported $130
million stock swap.12

Clearly, Vermeer Technologies benefited from the patent system. But
what about its competitors? Did the patents, in fact, block other entrants
and give Vermeer Technologies immunity from competition by “every-
body who followed?” Seemingly not—the second half of the 1990s saw
the development of numerous competitors to FrontPage.13 One reason for
the exaggerated fear of blocking is the belief that patents can foreclose
an entire software category. Software patents in general (and the Front-
Page patents in particular) do not typically occupy a large product space.
More usually, a patent protects a unique feature or set of features of the
software.14 The question of the appropriate breadth of software patents
has been well explored in the literature.15

 8. U.S. Patent No. 5,819,092 (issued Oct. 6, 1998)(Online Service Development Tool
with Fee Setting Capabilities); U.S. Patent No. 5,793,966 (issued Aug. 11, 1998) (Computer
System and Computer-Implemented Process for Creation and Maintenance of Online Ser-
vices); U.S. Patent No. 5,732,219 (issued Mar. 24, 1998) (Computer System and Computer-
Implemented Process for Remote Editing of Computer Files).
 9. Ferguson, supra note 7, at 94.
 10. Id. at 247.
 11. Michael A. Cusumano & David B. Yoffie, Competing on Internet Time:
Lessons from Netscape and Its Battle with Microsoft (1998).
 12. Louise Kehoe, Microsoft Expands in Internet Software with Vermeer Purchase, Fin.
Times, Jan. 17, 1996, at 32.
 13. Mainstream products competing with FrontPage included: HomePage by Claris,
DreamWeaver by Macromedia, HotMetal by XMetaL, and several others.
 14. “Most patentable inventions in computer science are not whole software programs
but particular ideas or approaches to specific problems.” Mark A. Lemley & David W.
O’Brien, Encouraging Software Reuse, 49 Stan. L. Rev. 255, 295 (1997).
 15. See, e.g., Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the
Software Industry, 89 Cal. L. Rev. 1 (2001); Robert P. Merges & Richard R. Nelson, On the

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

198 Michigan Telecommunications and Technology Law Review [Vol. 11:191

B. Patents Induce Disclosure and Wide Use of Inventions

In the current debate about software patents, disclosure is the most
under-appreciated benefit. To obtain a patent, the applicant must make a
disclosure of the invention specific enough that the invention can be re-
produced by a person with ordinary skill in the appropriate art (either
under license or free of cost when the patent has expired). For historical
reasons discussed later in this article, trade secrecy is endemic to the
software industry.16 For-profit software is typically distributed as a binary
program, with the intent that users or competitors will not be able to dis-
cover its algorithms or data structures. This was not always the case.

For example, in 1957 IBM introduced the first widely adopted pro-
gramming language, FORTRAN.17 Because IBM did not at that time
assert any intellectual property rights in its software, the source code was
distributed to users and a detailed high-level description published in the
academic literature.18 As a result, anyone who wanted to develop a
FORTRAN compiler had a clear blueprint of how to do so. Almost every
computer manufacturer and many universities developed FORTRAN
systems in the next few years. Compiler construction became one of the
corner-stones of computer science research and teaching, and developed
a substantial academic literature. By contrast, the spreadsheet—an object
equally worthy of study—has always been shrouded in secrecy. Spread-
sheets have never been a subject of serious scholarly study; there is no
textbook literature on spreadsheet program design, nor a significant sci-
entific literature.

Suppose VisiCalc had been patented when it was invented in 1979.19
It is true that competitors would have had to pay a royalty to Bricklin’s

Complex Economics of Patent Scope, 90 Colum. L. Rev. 839 (1990); Howard F. Chang, Pat-
ent Scope, Antitrust Policy, and Cumulative Innovation, 26 Rand J. Econ. 34 (1995).
 16. Open-source software is an exception, as source code is fully disclosed. The “open
source community” is the generic term for developers, who contribute to software projects
such as Linux, giving their (or their employer’s) time free and disclosing the code they write.
For-profit open-source firms gain their income from customization and other services. In
many respects this is an old model of software supply, similar to programming services in the
1950s. See Campbell-Kelly, supra note *, at 29–55.
 17. John Backus, The History of FORTRAN I, II, and III, IEEE Annals Hist. Com-
puting, July 1979, at 21.
 18. J. W. Backus et al., The FORTRAN Automatic Coding System, Proc. AFIPS
1964 Eastern Joint Computer Conference 1–5 (1964).
 19. In fact Dan Bricklin took legal counsel about securing a patent, but the advice he
was given was that an application would be unlikely to be successful. In retrospect, this was
poor advice but of course Bricklin and his advisor did not know that the spreadsheet would be
one of the cornerstone applications that started the personal computer revolution. For com-
ments from Dan Bricklin and the origins of VisiCalc, see Robert Slater, Portraits in
Silicon 285–94 (1987). See also Daniel Bricklin, Patenting VisiCalc, Dan Bricklin’s website,
at http://www.bricklin.com/patenting.htm (last visited May 8, 2005).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 199

firm Software Arts, but also, instead of reinventing the wheel each time a
new spreadsheet was developed, licensees would have had access to a
description of VisiCalc.20 They would have improved on Bricklin’s inven-
tion, filing their own patent for each advancement. The academy would
also have been able to participate, further advancing the art. If individual
entrepreneurs had been unable or unwilling to license the spreadsheet
patent, then they could have devised solutions different than the VisiCalc
spreadsheet, and who knows what inventions would have emerged. After
all, the spreadsheet is just one solution to the problem of a generalized
calculating device, but its wide acceptance and ubiquity has driven out
alternative solutions.

Because a software patent was not obtained and disclosure was not
made, competitors simply cloned the existing product rather than inno-
vating. In the 1980s there were some 75 competing spreadsheets on the
market, with few distinguishing characteristics.21 At different points in
time, a different product was dominant: VisiCalc from 1979 to 1983,
Lotus 1-2-3 from 1984 to 1990, and Microsoft Excel from 1991 to the
present.22 What caused one product to dominate was not superior techni-
cal capabilities, but network effects—the desire of users to share files.
When it was not possible to distinguish spreadsheets on their technical
merits, consumers chose the next most useful attribute.23

C. Patents Induce the Development and
Commercialization of Inventions

The inducement-to-commercialize theory argues that patents en-
courage the refinement, practical application, and deployment of
inventions which might otherwise languish for the inventor’s lack of

 20. It is acknowledged that the requirement for disclosure in software patents is set too
low to ensure the simple recreation of an invention. Burke has advocated that there should be a
requirement to append source code to a specification. This would certainly have been suffi-
cient to recreate the original spreadsheet invention. Thomas P. Burke, Software Patent
Protection: Debugging the Current System, 69 Notre Dame L. Rev. 1115, 1158 (1994).
 21. See generally Robert T. Fertig, The Software Revolution: Trends, Players,
Market Dynamics in Personal Computer Software 177–91 (1985).
 22. Quantitative data on the development of the spreadsheet market appears in
Stanley J. Liebowitz & Stephen E. Margolis, Winners, Losers and Microsoft: Com-
petition and Antitrust in High Technology 163–80 (1999). See also Martin Campbell-
Kelly, The Rise and Rise of the Spreadsheet, in Sumer to Spreadsheets: The History of
Mathematical Tables 322, 322–47 (Martin Campbell-Kelly et al. eds., 2003).
 23. Good sources on network effects in the software industry are Brian W. Arthur,
Competing Technologies, Increasing Returns, and Lock-In by Historical Events, 99 Econ. J.
116 (1989); Richard N. Langlois, External Economies and Economic Progress: The Case of
the Microcomputer Industry, 66 Bus. Hist. Rev. 1 (1992). More accessible accounts are Brian
W. Arthur, Increasing Returns and the New World of Business, Har. Bus. Rev. 100 (1996);
and Brian W. Arthur, Positive Feedbacks in the Economy, Sci. Am. 92 (1990).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

200 Michigan Telecommunications and Technology Law Review [Vol. 11:191

funds, entrepreneurial zest, or an external agency. For example, Douglas
Engelbart invented the mouse at the Stanford Research Institute (SRI) in
the 1960s.24 The mouse took several years and substantial R&D invest-
ments to bring it to market, a role for which SRI was ill-suited. Several
manufacturers, including Apple Computer, Logitech, and Microsoft, de-
veloped and patented distinct devices based on the SRI foundation
patent.25 The resulting devices were as much an advance over the SRI
original as a 1950s automobile was over the Model T.

Interest in the inducement-to-commercialize theory was increased by
the Bayh-Dole Act of 1980, which gave universities the patent rights to
inventions arising from government-funded research.26 It was intended
that the Act would facilitate the dissemination of innovations by conven-
tional commercial channels rather than simply through academic
publications and unpublished reports.27

An example of such inducement is the RSA cryptographic algorithm
patent, assigned to MIT in 1983.28 The patent was licensed to RSA Data
Security Inc., and for a decade the firm occupied a market niche in se-
cure communications, primarily for the financial services industry. With
the explosion of interest in secure communications for e-commerce on
the Internet, RSA Data Security gained an economic importance not an-
ticipated when it was formed in 1983.29 It was well placed to serve the e-
commerce market with unique, mature, patent-protected products. (The
RSA patent is discussed further in section 6 of this article.)

A related concept is that of the “inventions factory,” an enterprise
with specialized innovation capabilities but lacking the organizational
competencies or mission to exploit them. In the world of software and
business method patents, a controversial ideas factory is Walker Digital.30
Jay Walker is the owner of the contentious reverse-auction patent, which
was the concept underlying the PriceLine.com auction website.31 Walker

 24. Thierry Bardini, Bootstrapping: Douglas Engelbart, Coevolution, and
the Origins of Personal Computing (2000). U.S. Patent No. 3,541,541 (issued Nov. 17,
1970).
 25. U.S. Patent No. 4,464,652 (issued Aug. 7, 1984) (Apple Computer, Inc.); U.S. Pat-
ent No. 4,951,034 (issued Aug. 21, 1990) (Logitech, Inc.); U.S. Patent No. 5,414,445 (issued
May 9, 1995) (Microsoft Corporation).
 26. The Bayh-Dole Act, 35 U.S.C. §§ 200–212 (1980).
 27. Economic Theories, supra note 6, at 1040.
 28. U.S. Patent No. 4,405,829 (issued Sept. 20, 1983).
 29. The formation and early history of RSA Data Security Inc. is described in Steven
Levy, Crypto: How the Code Rebels Beat the Government—Saving Privacy in the
Digital Age 130–138 (2002).
 30. Dyan Machan, An Edison for a New Age?, Forbes, May 17, 1999, at 178.
 31. U.S. Patent No. 5,794,207 (issued Aug. 11, 1998). Observing PriceLine.com’s weak
financial performance since the Internet bubble burst, it is salutary to note that a patent pro-
vides a temporary monopoly, not immunity from market forces.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 201

Digital currently claims over 200 software and business method pat-
ents.32 There is a great deal of hostility to Walker’s operation, mainly
concerning the perceived low quality of business method patents, rather
than Walker’s concept of an innovation incubator. Inventions factories
have a long and illustrious history, extending back to Thomas Edison’s
Menlo Park Laboratory.33

D. Patents Enable Orderly Development of Broad Prospects

Critics of software patents frequently argue that patents block the en-
try of newcomers into the software field, as if this was inevitably a bad
thing. In fact, such blocking can be socially desirable.

Whenever a new technology breaks there is a gold-rush period when
an excess number of innovators seek to colonize the new prospect. This
was pronounced in the applications software market for personal com-
puters in the 1980s. For example, Business Week noted in 1984:

At the last count, there were 200 or more word processors, 150
spreadsheets, 200 data base programs, and 95 integrated pack-
ages that offer at least three functions. Moreover, distributors
report that of the 20,000 programs on the market, a mere 20
make up as much as half of their total business.34

The vast majority of the marketed software packages were clones of
successful products, with negligible originality. The result was a massive
shakeout when the gold rush frenzy subsided:

No one expected the halcyon days of the personal computer
software business to pass so quickly. Industry experts had pro-
jected that this market would continue to double annually, and
3,000 hopefuls, as a result, had jumped into the fray. But the glut
of suppliers, along with the soaring cost of marketing new prod-
ucts and a flood of me-too programs, is changing the picture
dramatically.35

From society’s view point, such “over fishing” is economically
wasteful because it means that many skilled innovators are drawn to the
new prospect and are thereby removed from more socially desirable ac-
tivities.36

 32. For company information on Walker Digital LLC, see its website at http://
www.walkerdigital.com/OurCompany.html.
 33. Paul Israel, Edison: A Life of Invention (1998).
 34. The Shakeout in Software: It’s Already Here, Bus. Wk., Aug. 20, 1984, at 103.
 35. Id.
 36. On the undesirability of over-fishing in the software context, see Merges & Nelson,
supra note 15, at 869; Rochelle Cooper Dreyfuss, Are Business Method Patents Bad for

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

202 Michigan Telecommunications and Technology Law Review [Vol. 11:191

With the availability of software patents, some of this over-fishing is
being eliminated. For example, there is presently a major opportunity for
developing software solutions to the email “spam” problem. Although
there are scores of entrants into this field, there is a great diversity of
approaches and patents are being applied for by both large firms and
SMEs.37 The patent system is thus ensuring an orderly development of
this broad prospect. Rather than merely cloning a successful product, an
innovator must devise an original solution that does not infringe on an-
other’s patent.38 This generates variety, and the Darwinian selection of
the marketplace will ensure the survival of the fittest.39 One counter ar-
gument sometimes asserted is that differentiating innovation in a patent
application from infringement of a prior work is unreasonably daunting.
This may be true, but a solution lies in the form of an improved prior art
database, not the abandonment of software patents.

II. Before There Was Software: Patents in
the Early IT Industry

In those days, it was not enough for an inventor to have a prom-
ising idea and sell it or assign it to a large company that could
help him exploit it or leave him free to pursue other ideas. Ideas,
even good ones, were plentiful commodities, as much so as the
ribbon and broad goods that the merchant sold. The inventor
had to convince someone else that his idea was practical; he had
to figure out how much it would cost to prove it; how his inven-
tion could be built and financed; who would try it; and, finally,
how he could repay the money needed to get it off the ground.

—Geoffrey D. Austrian40

Business?, 16 Santa Clara Computer & High Tech. L.J. 263, 274 (2000); Jared Earl
Grusd, Internet Business Methods: What Role Does and Should Patent Law Play?, 4 Va. J.L.
& Tech. 9, 53 (1999), available at http://www.vjolt.net/vol4/issue/v4i2a9-grusd.html.
 37. A web source lists 70 U.S. anti-spam patents granted, with many more applications
in progress. Bob Wyman, US Spam Patents: Partial List, at http://www1.ietf.org/mail-
archive/web/asrg/current/msg05356.html (last visited May 8, 2005). Large firms granted or
applying for patents include AT&T, Microsoft, and IBM. SMEs granted or applying for pat-
ents include Spam Arrest LLC, BrightMail Inc., and Mailblocks Inc.
 38. On me-too products and innovation failure, see Kenneth W. Dam, Some Economic
Considerations in the Intellectual Property Protection of Software, 24 J. Legal Stud. 321,
358 (1995).
 39. See generally Richard R. Nelson & Sidney G. Winter, An Evolutionary
Theory of Economic Change (1982).
 40. Geoffrey D. Austrian, Herman Hollerith: Forgotten Giant of Informa-
tion Processing 20 (1982).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 203

The patenting practices of today’s old-line computer firms—such as
IBM, Unisys and NCR—were established in the last quarter of the 19th
century. Patents were as crucial to starting a technology-based business
as finance and manufacture. When the business was established, patents
protected R&D investments against appropriation by free-riders and en-
abled innovations to be traded with competitors. The early IT industry
exhibited similar features to the software industry of today. Many of the
products were developed sequentially, with significant network effects.
Patenting was an instrumental part of the innovation process, rewarding
innovators for their investments while promoting competition.

Today IBM is the world’s most prolific investor in patents, for both
computer hardware and software.41 The company was founded in 1896 as
the Tabulating Machine Company of New York by Herman Hollerith, an
engineer and patent agent.42 A graduate of the Columbia School of
Mines, Hollerith’s short career had included a period as an instructor at
MIT, a few months in the Census Office, and a spell as a patent examiner
in the U.S. Patent and Trademark Office (USPTO), Washington DC. In
1884 Hollerith “hung out his own shingle nearby as an ‘Expert and So-
licitor of Patents’.”43 For Hollerith, being a patent attorney was not his
preferred career path, but rather a way to move into the world of inven-
tion and something to fall back on if things didn’t work out. He set out to
make his fortune by devising solutions to some of the critical techno-
logical problems of the era. He was doing exactly what the U.S. Patent
Act of 1790 had intended. If his inventions were successful, he would
secure a temporary monopoly in exchange for full disclosure.44

Hollerith decided to devise a system to mechanize the census.45 In
1885, the 1880 population census was still being processed (it would
take 7 years in total).46 His idea was to use machinery to automate the
then-manual counting, sorting and tabulation of census returns. He filed
a patent for his census machine in 1887,47 and in 1889 won the contract
for processing the 1890 census. His invention did the job in a third of the
time.48

 41. U.S. Pat. & Trademark Off., Patenting by Organizations 2001 (2002), avail-
able at http://www.uspto.gov/web/offices/ac/ido/oeip/taf/topo_01.pdf.
 42. A good source on the early history of the Tabulating Machine Company is Saul
Engelbourg, International Business Machines: A Business History (1976).
 43. Austrian, supra note 40, at 20.
 44. Patent Act of 1790, supra note 5.
 45. The most comprehensive sources on the U.S. census are Margo J. Anderson, The
American Census: A Social History (1988) and Leon E. Truesdell, The Development
of Punch Card Tabulation in the Bureau of the Census, 1890–1940 (1965).
 46. Martin Campbell-Kelly, ICL: A Business and Technical History 8 (1989).
 47. U.S. Patent No. 395,781(issued Jan. 8, 1889).
 48. See Campbell-Kelly, supra note 46, at 8-13.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

204 Michigan Telecommunications and Technology Law Review [Vol. 11:191

Hollerith was a consummate operator of and believer in the patent
system. His patent for the census machine protected many further inven-
tions and improvements. Many new machines were produced for the
commercial market in the early 1900s, all based on the original census
machine. Hollerith’s patents did not in practice give him a monopoly on
punched card machinery, but rather his success encouraged others to go
into the punched-card business using methods that did not infringe his
patents. James Powers, another inventor with experience of the U.S. cen-
sus, designed a machine that was entirely mechanical rather than using
Hollerith’s electrical sensing and switching technologies.49 Another suc-
cessful competitor, Royden Pierce, made purpose-built punched-card
machinery for corporations such as insurance companies.50

These competing products illustrate a benefit of patent disclosure.
Because Hollerith rented his equipment it would have been difficult for a
competitor to gain access to machinery and disassemble it in order to
reverse engineer a competing product. Instead, competitors could read
the Hollerith patents and obtain information required to invent around
the original patent, creating products that were more varied and with
more functions than Hollerith could have conceived alone.51

When Hollerith retired from The Tabulating Machine Company in
1911, it was moderately successful.52 Under his successor, Thomas Wat-
son Sr., it became a global powerhouse. The name was changed to the
International Business Machines Corporation in 1924.53 One of Watson’s
first acts on taking charge of the company was to establish an Inventions
Department. He had spent his early career at National Cash Register,
where Boss Kettering, arguably America’s greatest inventor after Edison,
had transformed the once-temperamental cash register into a mainstay of
American retailing through patented innovation.54 Watson planned to do
the same for the punched card machine. IBM patented its own inven-
tions, and acquired others it thought would be useful. For example, in
1922 IBM acquired the Royden Pierce patents (and Pierce joined IBM’s
Inventions Department).55 In 1926 Watson set up a Patent Development
Department under his chief inventor James W. Bryce.56

 49. U.S. Patent No. 1,245,504 (issued Nov. 6, 1917).
 50. Emerson W. Pugh, Building IBM: Shaping an Industry and Its Technology
44 (1995).
 51. For example, Powers introduced printing tabulators and alphabetic codes long be-
fore Hollerith. Campbell Kelly, supra note 46, at 34–37, 48–49.
 52. Engelbourg, supra note 42, at 54–58.
 53. Id. at 117.
 54. For a discussion of Boss Kettering, see generally Stuart W. Leslie, Boss Kette-
ring (1983).
 55. Pugh, supra note 50, at 42–44.
 56. Charles J. Bashe et al., IBM’s Early Computers 35 (1986).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 205

Competition between IBM and Powers Accounting Machines inten-
sified when the latter was acquired in a series of mergers that led to the
formation of Remington Rand (the forerunner of Unisys) in 1927.57 Dur-
ing the 1930s, the Hollerith and Powers lines of development constantly
leapfrogged one another vying for technological superiority through pat-
ented innovations.58 Arguably, the punched-card machine art developed
much more rapidly in this competitive environment than if either firm
had been able to rest on its laurels. It was the fact that inventions were
patented that forced the competitors to devise original solutions rather
than simply appropriate the competitor’s innovations.

It is likely that many patents would have appeared “obvious” to an
individual experienced in the art, and could have run into similar objec-
tions that software and business method patents encounter today.
However, it is often only in hindsight that patents seem obvious. A good
example of the difficulty of retrospectively assessing obviousness is il-
lustrated by Hollerith’s stop-card patent of 1914.59 A problem with the
tabulating machine at that time was that it would plow through a deck of
cards, producing a total only when the entire deck had been consumed.
However, it was often necessary to get subtotals at intermediate points in
the deck, for example when a customer account number changed. Hol-
lerith’s patented solution was to insert “stop cards” by hand into the
deck. These were ordinary, blank cards with a notch that caused the ma-
chine to stop, enabling the operator to record subtotals before restarting
the machine. Trivial as this invention might seem, the related patent was
the source of a significant patent dispute in Europe.60 It reinforces the
inventor’s adage that the most difficult part of invention is seeing the
problem; after that, devising a solution is usually relatively easy.

By the start of World War 2, IBM owned about 1400 patents in the
electric accounting machine field.61 The company employed some of
America’s foremost inventors, such as Clair D. Lake, James Bryce, Roy-
den Pierce and Frederick L. Fuller.62 In 1936, Bryce was honored by the
USPTO during its centennial celebrations as one of the “ten ‘greatest
living inventors’ ”.63 Academic journals then, as now, did not afford much
of an outlet for incremental mechanical innovation. For inventors, a pat-
ent was an important recognition of their professional standing, in what

 57. Martin Campbell-Kelly & William Aspray, Computer: A History of the
Information Machine 36 (1996).
 58. Arthur L. Norberg, High Technology Calculation in the Early 20th Century:
Punched Card Machinery in Business and Government, 31 Tech. & Culture 753 (1990).
 59. U.S. Patent No. 1,087,061 (issued Feb. 10, 1914).
 60. Campbell-Kelly, supra note 46, at 87–90.
 61. Engelbourg, supra note 42, at 136.
 62. Pugh, supra note 50, at 77–81.
 63. Id. at 78.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

206 Michigan Telecommunications and Technology Law Review [Vol. 11:191

was otherwise an anonymous calling. When he was in his late seventies,
Fuller published an autobiographical account of his life as an inventor,
including 170 pages of descriptions and drawings from his patents.64
Software patents serve a similar “ego-boo” role for programmers whose
inventions might not merit publication in peer-reviewed academic jour-
nals.65

*

Typewriter and word processor innovation is a compelling example of

the patent system working at its best: it fostered innovation and competi-
tion, leading to stupendous improvements in a relatively short period of
time. The early typewriter industry was considerably more competitive
than punched card machine manufacturing, because the market was much
bigger. Some 140 U.S. firms, and 400 worldwide, fought for market share
around the turn of the 19th century.66 The Remington Typewriter Company
was the first mover in the typewriter industry.

The classic QWERTY typewriter was patented by its inventor Chris-
topher Latham Sholes in 1868.67 Incidentally, the patent did not protect
the QWERTY keyboard arrangement. The persistence of the QWERTY
keyboard is perhaps the most cited example in network economics.68 Had
this arrangement, providing the user interface for Sholes’s typewriter,
been protected by a copyright regime analogous to that which protected
software user interfaces in the 1980s, universal adoption of the
QWERTY interface may not have been possible (see section 5 infra).

Mechanical writing was a keenly contested area. Sholes was the
52nd individual to file a typewriter patent, but the first to invent a ma-

 64. Frederick L. Fuller, My Half Century as an Inventor (1938).
 65. “Ego-boo” has not yet made the conventional dictionaries. Its sense is conveyed in
the following usage, “Hackers operate in a gift economy in which giant-size egos compete
with one another for attention and reputation on the Net. If you do something cool, like reduce
the length of a subroutine by 50 percent, you score major egoboo.” Mark Frauenfelder, Man
Against the FUD, L.A. Wkly, May 21, 1999.
 66. See Wilfred A. Beeching, Century of the Typewriter (1974); Bruce Bliven
Jr., The Wonderful Writing Machine (1954); G. Tilghman Richards, The History
and Development of Typewriters (1964); George Nichols Engler, The Typewriter Indus-
try: The Impact of a Significant Technological Revolution (1969) (unpublished Ph.D.
dissertation, University of California at Los Angeles) (available from UMI Dissertation Pub-
lishing).
 67. U.S. Patent No. 79,265 (issued Jun. 23, 1868).
 68. See, e.g., Paul A. David, Understanding the Economics of QWERTY: The Necessity
of History, in Economic History and the Modern Economist 30, 30–49 (William N.
Parker ed., 1986); James M. Utterback, Mastering the Dynamics of Innovation 5–7
(1994); Stanley J. Liebowitz & Stephen E. Margolis, The Fable of the Keys, 33 J.L. & Econ. 1
(1990).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 207

chine the world actually wanted.69 When Sholes needed money for im-
provements, he secured what we would now call “angel funding” from
James Densmore, a retired and well-to-do printer, in exchange for a
quarter share of the patent.70 Sholes would take another five years and
build 50 models before the machine was ready for manufacture.71 The
value of the patent to Sholes was thus to turn his invention into property
that could be exchanged for funding, and the temporary monopoly pro-
vided “breathing space.”72

The capital requirements for manufacture were far beyond
Densmore’s pocket, so Densmore approached Philo Remington, a manu-
facturer of small arms. The Remington Company was struggling since
the end of the Civil War, and the typewriter offered a chance to put its
idle plant to work. The first Remington typewriter went on sale in 1874,73
but it was a slow seller. The worst of many imperfections was that the
typist could not see what he or she had typed because the type-bars
printed on the underside of the carriage. This defect was eliminated in
one of the most important typewriter patents of all time, Frank X. Wag-
ner’s front-strike patent granted in 1893 and assigned to the Underwood
Corporation.74 With the Underwood patent, the typewriter took its mod-
ern form. The Underwood No. 5 “visible” typewriter went on sale in
1899. Protected by Wagner’s and subsequent patents “by 1920 Under-
wood’s sales of Model 5 were equal in quantity to all of the other firms
in the typewriter industry combined”.75 Underwood’s competitors re-
sponded with their own patented improvements. Besides variants of
visible typing, innovations included such items as “noiseless” operation,
tab settings, multicolor ribbons, and a lever operated paper feed.

We do not know much detail of the interaction between the type-
writer firms at this distance in time. We do know, however, that a great
deal of cross-licensing of patents took place, generally resulting in a
common look and feel for all typewriters. More than a hundred firms
came and went in the U.S. during the formative years of the industry,
leaving only a handful of major firms that included Underwood, Rem-
ington, L.C. Smith, and Royal.76 To be a member of the typewriter elite, a
firm needed to have patents to trade with the others; creating patented

 69. Bliven, supra note 66, at 42; Victor M. Linoff, Typewriter Topics, The Type-
writer: An Illustrated History, at v (2000).
 70. Bliven, supra note 66, at 48.
 71. Id. at 49.
 72. On breathing space, see Merges & Nelson, supra note 15, at 871.
 73. Richards, supra note 66, at 24.
 74. U.S. Patent No. 559,345 (issued Apr. 28, 1896).
 75. Engler, supra note 66, at 30.
 76. The shakeout in the typewriter is quantitatively described in Utterback, supra
note 68, at 33–34.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

208 Michigan Telecommunications and Technology Law Review [Vol. 11:191

innovations was how they stayed in the game. Rather like software,
every typewriter model contained dozens of patented innovations that
could potentially hold up its production, but there is no evidence that
such blocking took place.77 The firms that were shaken out included imi-
tators and free-riders that had no innovations to trade,78 as well as those
that failed to develop effective production, sales, and service organiza-
tions.79

By 1910 (when the typewriter was not much older than the personal
computer is today) there were 2600 patents in the typewriter class, and it
was a mature reliable product that had transformed the American office.80
There was relatively little product innovation after this date; instead
manufacturers competed on cost, reliability, quality, service operations,
and customer training.81 For example, Remington excelled in service op-
erations while Royal was noted for the quality of its perfectly aligned
type and elegant typefaces. In the 1930s the typewriter firms were a
prosperous, stable oligopoly. They were huge vertically integrated opera-
tions employing tens of thousands of workers. The existence of this
oligopoly did not exclude innovative small firms from participation. The
success of the industry spawned a strong aftermarket for complementary
products, as simple as carbon paper and as complex as adding and total-
izing attachments.82

The industry changed significantly in 1933, when IBM paid $1 mil-
lion to acquire the Electromatic Typewriter Company of Rochester, New
York.83 IBM refined the technology—patenting its many improve-
ments—and brought the first successful electric typewriter to market in
1935.84 IBM enjoyed significant success with this typewriter when of-

 77. The situation is analogous to that of patent cross-licensing in the semiconductor and
software industries today. See James Bessen & Eric Maskin, Sequential Innovation,
Patents and Imitation (MIT Department of Econ., Working Paper No. 00-01, January
2000); Carl Shapiro, Navigating the Patent Thicket: Cross Licenses, Patent Pools,
and Standard-Setting (Competition Policy Center, Paper CPC00’011, 2000).
 78. A typical free-riding firm, which did not last long, was the Manhattan Typewriter
Company of New York, which made a clone of the Remington No. 2 in 1898 for which
“[e]xpired patents were chiefly utilized.” Linoff, supra note 69, at 43.
 79. Alfred D. Chandler, The Visible Hand: The Managerial Revolution in
American Business 277–78, 308 (1977).
 80. Bliven, supra note 66, at 102.
 81. See generally James W. Cortada, Before the Computer: IBM, NCR,
Burroughs, and Remington Rand and the Industry They Created, 1865–1956 (1993).
 82. For an impression of the “incredible range” of office equipment available in the
1920s, see JoAnne Yates, Business Use of Information and Technology during the Industrial
Age, in A Nation Transformed by Information 107, 125-26 (Alfred W. Chandler Jr. and
James W. Cortada eds., 2000).
 83. Engelbourg, supra note 42, at 252–53; H.S. Beattie & R.A. Rahenkamp, IBM
Typewriter Innovation, 25 IBM J. Res. & Dev. 729 (1981).
 84. Beeching, supra note 66, at 123.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 209

fices re-equipped following World War 2. This led to another cycle of
product innovation as the incumbent manufacturers brought out electric
models to compete with IBM. But none of the firms made a successful
transition; the old industry was decimated and IBM came to dominate
the typewriter market as surely as Underwood had done half a century
earlier.

In the 1960s, another wave of innovation in machine writing started
with the word processor. IBM, which invented the term “word process-
ing,” was the dominant player in the field, although its products were
pedestrian evolutionary developments of its standard Selectric type-
writer.85 In 1976 a newcomer to word processing, Wang Laboratories,
introduced a CRT-based system—“a patented design that would win
much praise”86—which enabled users to edit and view documents on a
screen before printing them.87 The Wang Word Processing System (WPS)
was hugely successful, primarily because of its software-driven, user-
friendly interface. It soon enjoyed a dominant market share. Of course,
IBM and other word processing firms soon invented around one an-
other’s patents producing a rich ecology of competing systems.88 By the
mid-1970s, the cumulative total of typewriter and word processing pat-
ents exceeded 17,000.89

Our own generation’s wave of machine-writing innovation began
with the rise of the personal computer and word processing software
around 1980.90 There was no significant patenting activity associated
with word processing software; this, combined with the low entry barri-
ers, encouraged several hundred firms into the market. In 1985 there
were 300 packages for the IBM-compatible PC alone;91 almost all were
“me-too” clones of existing products. This was a classic case of over-
fishing and within a decade the number of firms had been reduced to
perhaps a score.92

 85. F.T. May, IBM Word Processing Developments, 25 IBM J. Res. & Dev. 741 (1981).
 86. Charles C. Kenney, Riding the Runaway Horse: The Rise and Decline of
Wang Laboratories 69 (1992).
 87. For histories of the Wang WPS word processing system, see Kenney, supra note
86 at 63–77; and An Wang & Eugene Linden, Lessons: An Autobiography 171–187
(1986). The WPS patent is U.S. Patent No. 4,145,739 (issued Mar. 20, 1979). The patent is a
typical process-and-apparatus software-related patent of the type discussed in section 4.
 88. Amy D. Wohl, What’s Happening in Word Processing, Datamation, Apr. 1977, at
65.
 89. Search conducted by the author on the USPTO website (http://www.uspto.gov/patft/
index.html) for Class 400 Typewriting Machines, 1790–1975.
 90. Paul Freiberger & Michael Swaine, Fire in the Valley: The Making of the
Personal Computer 147–48, 152–53 (1984).
 91. Fertig, supra note 21, at 164.
 92. On over-fishing, see Merges & Nelson, supra note 15, at 869; Grusd, supra note 36,
at 53; Dreyfuss, supra note 36, at 274.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

210 Michigan Telecommunications and Technology Law Review [Vol. 11:191

III. The First Software Products

“Productization” of software posed a completely new set of con-
siderations and problems for Informatics. No one had sold a
software product before. How much should the product be sold
for? . . . Should the software be sold outright allowing purchas-
ers to do whatever they wanted with their purchase copy, except
resell it? How can unauthorized duplication of the system and
transfer of it to others be prevented?

While such questions have since been answered numerous times
by many software companies, in 1967 these were totally new and
unanswered questions for the embryonic industry.

—Richard L. Forman93

IBM introduced its first electronic computer, the model 701, in
1953.94 The term software had not yet been invented (it came into use
about 1960)95 and the programs that IBM supplied for the 701 consisted
of only a few hundred lines of code—a tiny fraction of the amount one
would get with a domestic PC today.96

Neither IBM nor any other computer manufacturer took any steps to
protect the intellectual property of its programs. IBM made a policy de-
cision that computer programs and procedures were not patentable.97 Nor
did IBM assert copyright in its programs because it was unclear that
such an assertion would have any validity.98 The lack of concern for in-
tellectual property in software may seem surprising, but as late as 1970
manufacturer-supplied programs accounted for only about 3 percent of
the cost of a computer.99 There was little economic incentive to press for
an appropriate IP regime for software protection.100

 93. Richard L. Forman, Fulfilling the Computer’s Promise: The History of
Informatics 1962–1968, at 9/18 (1985).
 94. Bashe et al., supra note 56, at 163.
 95. Ivars Peterson, Software’s Origin, Sci. News Online, Jul. 29, 2000, at http://
www.sciencenews.org/articles/20000729/mathtrek.asp.
 96. Bashe et al., supra note 56, at 332.
 97. Pugh, supra note 50, at 226.
 98. See Robert V. Head, A Guide to Packaged Systems 123 (1971).
 99. Watts S. Humphrey, Reflections on a Software Life, in In the Beginning: Per-
sonal Recollections of Software Pioneers 29–53 (Robert L. Glass ed., 1998).
 100. In 1965 James Birkenstock, vice-president of IBM, asserted the company’s continu-
ing lack of interest in software patents at the presidential commission on the working of the
patent system. See Pamela Samuelson, Benson Revisited: The Case against Patent Protection
for Algorithms and Other Computer Program-Related Inventions, 39 Emory L.J. 1025, 1038
(1990).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 211

In the mid-1950s, about a dozen firms entered the programming ser-
vices industry, writing programs to order for clients.101 Here again,
software protection was not a significant issue because programs written
under contract for an organization were so particular that they would
have had little value to another organization. Moreover, in an era when
computers cost several hundred thousand dollars a year to rent, the high
programming cost was buried under the overall cost of computer owner-
ship.102

The situation changed in the mid 1960s with the arrival of the IBM
System/360 computer. The System/360 was extremely successful, creat-
ing for the first time an industry standard platform.103 At the same time,
the computer population had begun to explode—from 5,500 worldwide
in 1960 to 29,600 by 1965, an annual growth rate of 30 percent.104 Fal-
ling hardware prices had created a new sector of the computer market of
corporations paying annual rentals of as little as fifty thousand dollars.105
For these new owners, custom-written programs were not economically
justifiable. Fortunately, the new generation of computers had much
greater speeds and larger memories than previous models, allowing the
inefficiencies of generalized software “products” to be tolerated rather
than requiring development of more efficient, custom-written programs.
For software firms, the large customer base of System/360 users made
writing such generalized programs a viable business proposition.

Hence, the second half of the 1960s saw the first program products
from independent software vendors.106 Software products needed two
kinds of intellectual property protection, for which the existing mecha-
nisms of trade secret, copyright and patent each offered a degree of
cover, although none was wholly satisfactory. First, the functional as-
pects and source code of a program needed to be protected from
appropriation by a competitor that might plagiarize them to create a
competing product. Second, packaged programs needed to be protected
from unauthorized copying by a user organization that wanted to make

 101. Two good business histories of programming services are Claude Baum, The
System Builders: The Story of SDC (1981) and Forman, supra note 93. See also Camp-
bell-Kelly, supra note *, at chs. 2 & 3 for a history of software contractors.
 102. Frederick P. Brooks Jr., No Silver Bullet: Essence and Accidents of Software Engi-
neering, Computer, Apr. 1987, at 10.
 103. See generally Emerson W. Pugh et al., IBM’s 360 and Early 370 Systems
(1991).
 104. Montgomery Phister Jr., Data Processing: Technology and Economics 251
(2nd ed. 1979) (1978).
 105. Franklin M. Fisher et al., IBM and the U.S. Data Processing Industry: An
Economic History 105 (1983).
 106. Luanne James Johnson, A View from the 1960s: How the Software Industry Began,
IEEE Annals Hist. Computing, Jan.–Mar. 1998, at 36. The early history of the software
products industry is described in Campbell-Kelly, supra note *, at 89–120.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

212 Michigan Telecommunications and Technology Law Review [Vol. 11:191

use of the program but did not wish to pay for it. This second copy pro-
tection is aimed at what is now known as piracy.

Two early software products provide examples of the differing ways in
which companies used intellectual property to secure their property rights.
Furthermore, these examples suggest that patents helped create rather than
diminish sequential innovation. Mark IV, a file management system, util-
ized the protection regimes of trade secrecy and contract law; Applied
Data Research Inc. (ADR) obtained a patent for its flowcharting package,
Autoflow. Using contract and trade secrecy meant that all information
about Mark IV was kept out of the public sphere—competitors were
forced to start from scratch. With Autoflow, securing a patent meant that
information about the inner-workings of Autoflow was available to be
built upon and used by competitors.

The Mark IV file management system was one of the most important
products in the early history of the software industry.107 Because of its
early introduction, it shaped many of the practices of the industry—not
least its approach to protecting intellectual property. The program was
created by the Informatics Corporation in 1967.108 A “file management
system” was an early form of database, supplemented by a complemen-
tary suite of programs for file maintenance and report generation. Mark
IV was a very important product because for the first time it provided
users with a packaged system which they could use to run a substantial
part of their business. Early users included firms such as Prudential and
Sun Oil.109 Following its launch in 1967 it was the world’s top-selling
program for 15 years.110 When it peaked in 1983 it had generated cumu-
lative revenues exceeding $100 million and had several thousand users
worldwide.111

However, back in 1965, when Mark IV was still on the drawing
board, software was seen as a free good. A major cultural shift was
needed for users to accept and respect the concept of software as intel-
lectual property. To protect the anticipated $500,000 development costs
of Mark IV112, Informatics’ president Walter F. Bauer considered the
three options: patents, copyright, and trade secrecy.

First, Informatics applied for a patent. However, in 1965 it was gen-
erally held that programs could not be patented because the U.S. patent

 107. Walter F. Bauer, Informatics: An Early Software Company, IEEE Annals Hist.
Computing, Apr.–Jun. 1996, at 70; John A. Postley, Mark IV: Evolution of a Software Prod-
uct, a Memoir, IEEE Annals Hist. Computing Jan.–Mar. 1998, at 43.
 108. Forman, supra note 93, at 9/20.
 109. Id.
 110. Bauer, supra note 107, at 74–75.
 111. Mark IV revenues are summarized in Campbell-Kelly, supra note *, at 117.
 112. Forman, supra note 93, at 9/15.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 213

system explicitly excluded mathematical laws (and hence computer al-
gorithms) as patentable subject matter.113

The second option was copyright protection. In 1964, the U.S. Copy-
right Office had accepted that programs could be afforded copyright
protection under a “rule of doubt,” provided that a human-readable copy
of the program source code was deposited in the Office.114 However, this
would have enabled a competitor to inspect the code of the program and
reverse engineer a clone. In this context, reverse engineering would
mean to study the source code in order to understand how it worked,
transcribe its data structures and formats, and then write a program with
the same behaviors.115 This would have been completely legal. However,
writing the source code represented only a fraction of the $500,000 de-
velopment cost of Mark IV. Most of the money went to defining the
system and its data formats, testing trial versions with users, reversing
product decisions that did not work out, and creating a demand for the
product through sales and marketing efforts. A competitor developing a
product through reverse engineering of Mark IV would only face the cost
of writing the source code; they could produce a functional replacement
of the product for a fraction of Informatics’ development cost. For Bauer
in 1965, this risk was unacceptable.116

Thirdly, and largely as a last resort, Informatics decided to use trade
secrecy and contract law to protect Mark IV. Customers were not sold
the program, but rather were granted a license to use it, which incorpo-
rated a non-disclosure agreement. The program and all the associated
documentation remained the property of Informatics, and customers
were forbidden to make any disclosures of the program or documenta-
tion to a third party. Further, Informatics’ own workers were bound by an
employment contract that forbade them from disclosing Mark IV knowl-
edge to third parties, or transferring know-how or code to another
employer.117

 113. Mark IV did, however, subsequently gain patent protection in Canada and the UK.
Id. at 9/19.
 114. Milton R. Wessel, Legal Protection of Computer Programs, Harv. Bus. Rev.,
Mar.–Apr. 1965, at 97, 103, citing Copyright Registration for Computer Programs, May 19,
1964, 11 Bull. Cr. Soc. 361 (1964).
 115. For an analysis of the many techniques of reverse engineering, see Andrew John-
son-Laird, Software Reverse Engineering in the Real World, 19 U. Dayton L. Rev. 843
(1994).
 116. For an extended discussion on the inadequacies of copyright protection for soft-
ware, see Pamela Samuelson et al., Manifesto Concerning the Legal Protection of Computer
Programs, 94 Colum. L. Rev. 2308 (1994).
 117. Forman, supra note 93, at 9/19.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

214 Michigan Telecommunications and Technology Law Review [Vol. 11:191

ADR took a very different approach to protecting its product, Auto-
flow.118 In the 1960s, almost all programming shops required
programmers to document programs with a flowchart—a graphical rep-
resentation of the logical flow of the program. Flowcharting was often
the last, and most irksome, task of a programmer before moving on to
the fresh field of a new assignment. Consequently, flowcharts often did
not get drawn, and maintenance costs increased. Martin Goetz, co-
founder of ADR, designed Autoflow to produce flowcharts effortlessly
by reading through a user’s source program and from it automatically
generating and printing a neatly formatted flowchart. It was a tour de
force of programming that even today is an impressive piece of coding.
The system cost about $10,000 to develop, much more to promote; it
paid off, however, as it went on to sell several thousand copies.119

In 1968, Goetz applied for a patent for the program; in 1970, it was
one of the earliest software product patents granted.120 Goetz had been
able to take advantage of an August 1966 advisory by the U.S. Patent
and Trade Mark Office (USPTO) that “a patent could be granted to a
program if it could meet the requirements of either a ‘process’ or an ‘ap-
paratus’.”121 Accordingly, the Autoflow program was presented as a
machine for achieving a particular kind of information transformation.
Just as a pin-making machine would have transformed steel wire into
pins, so the Autoflow “machine” transformed source card decks into
printed charts.

In accordance with society’s patent bargain, in exchange for full dis-
closure of the invention, ADR obtained a 17-year monopoly for
Autoflow after which anyone was free to make use of it without permis-
sion or charge. ADR’s patent attorney took disclosure seriously. The
patent specification included a complete 50-page listing of the program.
Furthermore, Autoflow was used to produce a complete flowchart of it-
self—an example of recursion guaranteed to warm the heart of any
computer scientist. Because of the thorough disclosure required by pat-
ent law, contemporary competitors were able to study Autoflow,
understand its algorithms, improve or design around them, and produce
competing products which the market could accept or reject.

Critics of software patents often claim the “competition through im-
provement” argument is spurious because there is usually only one best

 118. For a short history of ADR, see Don Leavitt, A Silver Anniversary in a 15-Year-Old
World, Software News, Jul. 1, 1984, at 38.
 119. Id.
 120. U.S. Patent No. 3,533,086 (issued Oct. 6, 1970).
 121. Robert B. Bigelow, Legal Aspects of Proprietary Software, Datamation, Oct.
1968, at 32–39. For a brief history of “tricks of the trade” for process-and-apparatus patents,
see Burke, supra note 20, at 1151–54.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 215

way to write an algorithm and a patent forecloses it to others.122 How-
ever, the Autoflow patent did not create a barrier preventing the entry of
competitors. By 1972, there were at least four competing products.123 It is
not known whether or not any of the products infringed the ADR patent.
Because none of the products was as successful as Autoflow, the ques-
tion probably never arose.

The Autoflow example shows the patent system working as it was
intended. In exchange for a temporary monopoly, ADR disclosed its in-
vention allowing the knowledge to diffuse into the software writing
community. Competitors were free to do their best to improve on the
invention. Contrast this with Mark IV, protected vigorously by trade se-
cret. Assuming no infringement took place, each of the half-dozen Mark
IV competitors had to build from the ground up, learning little from the
others or Informatics’ prior experience.124 It was like six desert island
companies.125

IV. Algorithms, Software Patents and
the Virtualization of Inventions

The players move from space to space in accordance with the
throw of the dice and hence become subject to rental charges if
they land upon property held by other players. If unable to meet
a rental charge and the player concerned is unable to raise
money by disposing of any property which he holds, to the Bank
or other players in accordance with the rules of the game, he is

 122. For example, one software-patent critic states, “functional claiming, combined with
the virtual nature of software, is an absolute bar to the development of any functionally
equivalent product.” Russell Moy, A Case against Software Patents, 17 Santa Clara Com-
puter & High Tech. L.J. 67, 99 (2000). In contrast, John Swinson, a legally trained computer
scientist, states, “a given result can generally be reached by more than one program.” John
Swinson, Copyright or Patent or Both: An Algorithmic Approach to Computer Software Pro-
tection, 5 Harv. J.L. & Tech. 145, 149 (1991).
 123. The competing products were Dynachart by Applications Programming Co., Auto-
doc by Data Instrument Co., Quick-Draw by National Computer Analysts, and FCP by World
Computer Corp. ADR’s Autoflow cost the most at $7,370, while the others cost $1,500 up-
ward. The IBM Program Application Library also included a free flowcharting program,
Autodoc-V. See Ned Chapin, Flowchart Packages and the ANSI Standard, Datamation, Sept.
1972, at 48–49.
 124. Donald B. Steig, File Management Systems, Datamation, Oct. 1972, at 48–51;
Larry Welke, A Review of File Management Systems, Datamation, Oct. 1972, at 52–54.
 125. It should be noted, however, that the level of disclosure in the ADR Autoflow pat-
ent—which included a full source code listing—was much greater than that of most current
patents. Although current disclosure requirements are set too low, the reform of the disclosure
rules is a better solution than driving software firms back into trade secrecy. See supra note
20.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

216 Michigan Telecommunications and Technology Law Review [Vol. 11:191

considered bankrupt and must quit the game, taking up his sym-
bol or token from the board.

—Monopoly Patent, 1935126

The history of software patents is bracketed by two landmark deci-
sions: Gottschalk v. Benson in 1972 and Diamond v. Diehr in 1981.127
Both addressed the issue of whether or not a computer algorithm consti-
tuted patentable subject matter. After Gottschalk, the patent environment
was unfavorable to software patents; after Diamond it became broadly
favorable.128 However, between these two decisions, there were major
technical and business developments—the invention of the microproces-
sor, the widespread use of embedded microprocessors, and the rise of the
personal computer. Domestic sales of U.S. software products grew from
$440 million to over $4 billion.129

Gottschalk v. Benson concerned a patent application by Bell Tele-
phone Laboratories, the research arm of AT&T.130 Bell Labs was one of
the first companies to advocate software patenting. Bell Labs had al-
ready been granted several patents when an application by two of its
researchers, Gary Benson and Arthur Tabbot, was rejected in 1968.131
The Benson-Tabbot invention, filed in 1963, was a means of converting
Binary Coded Decimal (BCD) numbers to ordinary binary numbers.132
Although most of the patent was expressed in process-and-apparatus
form, one of the claims related to the algorithm itself. The algorithm
could have been executed by any general purpose computer or even us-
ing pencil and paper. Moreover, the algorithm could have been

 126. U.S. Patent No. 2,026,082 (issued Dec. 31, 1935).
 127. Gottschalk v. Benson, 409 U.S. 63 (1972); Diamond v. Diehr, 450 U.S. 175 (1981).
The histories of Gottschalk v. Benson and Diamond v. Diehr, and the many cases in between,
have been the subject of many articles. A good bibliography is given in Burke, supra note 20.
 128. Good histories of this period in software patent history which convey something of
the political and economic as well as the legal environment are Burke, supra note 20; and
Samuelson, supra note 100.
 129. Campbell-Kelly, supra note *, at 14.
 130. Concise technical and legal histories of Gottschalk v. Benson appear in Howard W.
Brockman, Intellectual Property Law for Engineers and Scientists 215–16 (2004);
H. W. A. M. Hanneman, The Patentability of Computer Software: An International
Guide to the Protection of Computer-Related Inventions 51–54 (1985); Gregory A.
Stobbs, Software Patents 286–90 (1995).
 131. In re Benson, 441 F.2d 682 (C.C.P.A. 1971).
 132. For an authoritative history of BCD numbers, see Donald E. Knuth, The Art of
Computer Programming, Vol. 2: Semi-Numerical Algorithms 169 (1969). However, it is
not necessary to understand or know the notational details of BCD and binary numbers, or the
conversion algorithm itself, to follow the legal argument.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 217

considered a “law of nature”.133 The patent was rejected by the examiner
because the algorithm constituted “non-statutory subject matter.”134 Bell
Labs took the case to the Court of Customs and Patent Appeals, which
reversed the decision on the grounds that the process “had no practical
use other than the more effective operation and utilization of a machine
known as a digital computer” and the Court saw “no sound reason why
the claims in this case should be held non-statutory.”135 Finally, the
Commissioner of the Patent Office, Leonard Gottschalk, appealed to the
Supreme Court for a writ of certiorari. The Supreme Court reversed
again, stating that the claim was “so abstract and sweeping as to cover
both known and unknown uses” and “would wholly pre-empt the
mathematical formula and in practical effect would be a patent on the
algorithm itself.”136 In effect, this decision ruled out “pure” software pat-
ents but left the door open for software enabled inventions that produced
a new, useful, and non-obvious technical effect.137

From a historical perspective, the patenting of algorithms has never
been a black-and-white issue. For example, a patented board game such
as Monopoly embodies a set of rules and procedures that a computer
scientist would consider to be program-like.138 Indeed, board games are
sometimes used as a pedagogical device to get across procedural pro-
gramming concepts.139 Today, Monopoly is sold as a computer game—a
pure software artifact.140

A cryptographic apparatus is another example of an embodied algo-
rithm. Landmark inventions include the Vernam cryptographic machine
(1919), the Swedish Enigma (1923), the U.S. Sigaba (1930), and the Brit-
ish Typex (1935).141 The Enigma used a scrambling unit that converted

 133. That is, if BCD numbers could be said to exist in nature. This would depend on
whether one subscribed to the doctrine that “God made the integers; all else is the work of
man.” Leopold Kronecker, quoted in E.T. Bell, Men of Mathematics 477 (1986).
 134. In re Benson, supra note 131, at 1137.
 135. Cited in Stobbs, supra note 130, at 289.
 136. Id.
 137. The term “technical effect” is predominantly used within the European Community;
the United States does not appear to have such a neat encapsulation. See Reinier Bakels & P.
Bernt Hugenholtz, The Patentability of Computer Programs: Discussion of Euro-
pean-Level Legislation in the Field of Patents for Software (Eur. Parl. Directorate-
Gen. for Research, Working Paper No. JURI 107 EN, 2002).
 138. U.S. Patent No. 2,026,082, supra note 126.
 139. See, e.g., M.A. Storey et al., How Do Program Understanding Tools Affect How
Programmers Understand Programs? 36 J. Sci. Computer Programming 183 (2000).
 140. Parker Bros., the original owners of Monopoly, is a subsidiary of Hasboro, Inc. The
Monopoly computer game is manufactured by Hasboro Interactive.
 141. The best accessible technical account of non-electronic cryptographic apparatus is
David Kahn, The Code-Breakers: The Story of Secret Writing 394–434 (1967). Kahn
makes good use of the patent literature. A more recent treatment is the historical overview in
Donald W. Davies & Wynn L. Price, Security for Computer Networks: An

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

218 Michigan Telecommunications and Technology Law Review [Vol. 11:191

plain text keyed by the operator into an encrypted message. When the
encrypted message was keyed into a second machine using the same
“key”, the process was reversed, revealing the original text. The informa-
tion transformation performed by the Enigma was algorithmic, even
though it was achieved by a set of rotating wheels and electrical connec-
tions. Indeed, the Enigma was broken by the Allies in World War 2 when
they recognized that it was an algorithmic device, and used mathematics
and proto-computers to attack it.142 Today, software Enigma simulators
have been written by computer hobbyists and amateur cryptographers.143

There are two reasons why patents on such algorithmic devices were
allowed. First, the algorithms and the hardware implementations were so
commingled that the machinery itself passed the tests of novelty and
non-obviousness. Second, patent examiners were not familiar with the
concept of an algorithm as a static description of a dynamic process, and
had no vocabulary for it. Although patent examiners lacked the concep-
tual background to recognize algorithms, the Patent Office was granting
algorithmic patents.

The effect of the Gottschalk v. Benson result was to discourage ap-
plications for pure software inventions—inventions that could form the
basis for a software product, independent of a particular hardware con-
figuration—in the 1970s.144 Many patents were granted for physical
inventions that incorporated algorithms and programs. This was espe-
cially common when inventors replaced electro-mechanical components
in existing products with embedded microprocessors to improve the
functionality of the manufactured artifact.

For example, the 1970s saw electro-mechanical carburetors in auto-
mobiles replaced by microprocessor-controlled fuel injection systems.
Electro-mechanical pin-ball machines were augmented with pro-
grammed microprocessors. Controllers for elevators, once directed by
electro-mechanical relays, were computerized. Automatic braking sys-
tems, electronic typewriters, microwave ovens, computing scales,
videogames—the list of software-related inventions patented between

Introduction to Teleprocessing and Electronic Funds Transfer 30–39 (1989). U.S.
Patents for the cited machines are as follows. The Vernam machine: U.S. Patent No. 1,310,719
(issued Jul. 22, 1919); the Enigma: U.S. Patent No. 1,657,411 (issued Jan. 24, 1928); the
Sigaba: U.S. Patent No., 2,028,772 (issued Jan. 28, 1936)—subsequent patents were not
granted until recent times due to secrecy.
 142. Andrew Hodges, Alan Turing: The Enigma 160–241 (1983).
 143. For a listing of several Enigma and other simulators, see Enigma simulator index
page, at http://frode.home.cern.ch/frode/crypto/simula/index.html (last visited May 8, 2005).
 144. For example, as late as 1985 ADAPSO’s manual on software protection commented
on software patent applications “If you still want to go ahead, your first step will bring a hos-
tile response.” Ernest E. Keet, Preventing Piracy: A Business Guide to Software
Protection 44 (1985) (emphasis added).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 219

Gottschalk v. Benson and Diamond v. Dhier is as long as it is idiosyn-
cratic. In many cases the patent specifications included complete
program listings; it can hardly be disputed that they incorporated algo-
rithms.145

These inventions—and many others like them—had a century or
more of patent history. The incorporation of embedded microprocessors
was so widely accepted as an incremental product improvement that
these innovations seemingly slipped unchallenged under the Patent Of-
fice door. There was an acceptance of creeping intangibility within
patents, but it was difficult to draw the line where a patent would be re-
jected on the grounds of non-statuary subject matter.

An example of this virtualization is the postage meter. Arthur Pitney
patented his first postage meter in 1901 and, with a partner Walter
Bowes, had developed a significant business by the 1920s.146 The original
machine printed a fixed denomination on an envelope and incremented a
tamper-proof counter.147 Periodically, a Post Office account representa-
tive would read the meter and reset it after collecting the amount due.
Subsequent models in the 1920s and 1930s allowed variable postage
amounts to be printed and incorporated detachable meters so that the
user could take the meter to the Post Office.148 Next, electrically operated
models were developed, and in the 1960s discrete electronics were in-
corporated. In 1976 a patent was granted for a “Microcomputerized
Electronic Postage Meter System” that included a 20–page program list-
ing.149 In 1978, a “Remote Postage Meter Charging System” enabled
postage costs to be settled electronically instead of physically taking the
meter to the Post Office; again, the specification included many pages of
computer code.150 In 1981, another patent for a “Microcomputerized

 145. The following patents are typical of those in the 1970s that included detailed pro-
gram listings, flowcharts or algorithms in their specifications. U.S. Patent No. 4,255,789
(issued Mar. 10, 1981) (assigned to Bendix Corp.); U.S. Patent No. 4,208,717 (issued Jun. 17,
1980) (assigned to Westinghouse Electric Corp.); U.S. Patent No. 4,198,051 (issued Apr. 15,
1980) (assigned to Bally Manufacturing Corp.); U.S. Patent No. 4,154,855 (issued May 15,
1979) (assigned to Litton Systems, Inc.); U.S. Patent No. 4,138,719 (issued Feb. 6, 1979)
(assigned to Xerox Corp.); U.S. Patent No. 4,089,524 (issued May 16, 1978) (assigned to
Gremlin Industries, Inc.); U.S. Patent No. 4,063,620 (issued Dec. 20, 1977) (assigned to West-
inghouse Electric Corp.); U.S. Patent No. 4,012,725 (issued Mar. 15, 1977) (assigned to
Hewlett-Packard Company); U.S. Patent No. 3,962,569 (issued Jun. 8, 1976) (assigned to
Reliance Electric Company);.
 146. See generally William Cahn, The Story of Pitney-Bowes (1961).
 147. U.S. Patent No. 710,997 (issued Oct. 14, 1902).
 148. The Pitney-Bowes business took off in 1920 with the detachable-meter model M.
The invention is celebrated in Pitney Bowes Model M Postage Meter 1920: An Inter-
national Historic Mechanical Engineering Landmark (American Society of
Mechanical Engineers), 1986.
 149. U.S. Patent No. 3,978,457 (issued Aug. 31, 1976).
 150. U.S. Patent No. 4,097,923 (issued Jun. 27, 1978).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

220 Michigan Telecommunications and Technology Law Review [Vol. 11:191

Electronic Postage Meter System” allowed the postage meter to be inte-
grated with a personal computer and printer so that, for example, pre-
paid postage labels could be printed.151 The innovations to the postage
meter contained increasing levels of algorithmic components; none were
rejected as non-statutory subject matter. This increasing virtualization
demonstrated that software components could be patented within tangi-
ble inventions, while pure software was still largely unprotected.

One major software product did benefit from patent protection in the
1970s, a program called SyncSort.152 The program was developed by
Duane Whitlow, the proprietor of a small software contracting firm
Whitlow Computer Services of Englewood Cliffs, N.J. (The company
was later renamed SyncSort Inc., and it is still a significant industry
player.) SyncSort improved the speed of the existing IBM sorting pro-
grams by at least a factor of two.153 The program used a complex and
very particular algorithm that had little application outside of the context
of the IBM System/360 computer for which it was designed. The inven-
tion also made use of a novel and previously unknown machine
instruction.154 It may have been the particularity of the algorithm, or the
fact that it made use of a newly discovered hardware innovation, that
rewarded this pure software product with rare patent protection.

There was no shortage of potential test cases that a patent commis-
sioner might have chosen to explore the patentability of software
inventions in the courts. Hence, it is surprising that the case Commis-
sioner Sidney Diamond chose for a writ of certiorari was one that seems
to have been marginal and likely to shed little light on the subject.

In 1975, the Federal Mogul Corporation, a manufacturer of automo-
tive parts, filed a patent for an improved rubber curing process developed
by its engineers James Diehr and Theodore Lutton.155 The manufacturing
process involved the fabrication of rubber components that had to be
removed from a heated mold when the rubber had cured. Prior to the
Diehr-Lutton invention, the curing time was determined by an operator
using rule of thumb and years of experience. The invention replaced the
human agent with a set of temperature sensing devices and an algorithm,
executed by a programmed computer, which automatically opened the
mold after the computed cure time. The patent examiner rejected the

 151. U.S. Patent No. 4,271,481 (issued Jun. 2, 1981).
 152. U.S. Patent No. 4,210,961 (issued Jul. 1, 1980).
 153. See id. at col. 23.
 154. Surprisingly, the instruction was not documented and was unknown to IBM—it
simply “fell out of the wiring.” Quoting Duane Whitlow, cited in Campbell-Kelly, supra
note *, at 102.
 155. Concise technical and legal histories of Diamond v. Diehr appear in Brockman,
supra note 130, at 216–17; Stobbs, supra note 130, at 300–06; and Hanneman, supra note
130, at 85–92.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 221

patent on the grounds that the algorithm was non-statutory subject mat-
ter. The decision was reversed in the Court of Customs and Patent
Appeals and affirmed by the Supreme Court on the grounds that the in-
vention was so particular it did not rule out the use of the algorithm in
other contexts. A patent was granted in 1982.156

After Diamond v. Diehr, the Patent Office was broadly favorable to
pure software patents; however, the decision left many issues unresolved.
Some commentators believed the decision to be a “green light for the
unlimited patenting of software techniques”; the light was dim and the
software industry did not engage gear.157 It would be several years before
inventors began regularly seeking pure software patents.158 Meanwhile,
copyright was king. Of the dozen or so guides to software protection
published in the 1980s, all but one were devoted to copyright.159 Even the
software-protection guide published by the industry trade association
ADAPSO focused on the use of copyright for protecting intellectual
property in software.160

V. The Limits of Copyright Protection and
the Rise of Trade Secrecy

When programs cannot be protected by statute, they must be pro-
tected by secrecy. And when programs are not freely disclosed,
they are not as likely to be improved by use. Secrecy does not

 156. U.S. Patent No. 4,344,142 (issued Aug. 10, 1982).
 157. Stallman & Garfinkle, supra note 2, at 22.
 158. Burke offers a “realpolitik explanation” that software patents were discouraged
partly on the logistical grounds that the USPTO lack trained examiners. Burke, supra note 20,
at 1146.
 159. The exception was Hanneman, supra note 130. Typical books of the 1980s aimed
at software makers and focusing on copyright protection included Frederick L. Cooper III,
Law and the Software Marketeer (1988); Anthony L. Clapes, Software Copyright,
and Competition: The “Look and Feel” of the Law (1989); Keet, supra note 144; G.
Gervaise Davis III, Software Protection: Practical and Legal Steps to Protect and
Market Computer Programs (1985); Thorne D. Harris III, Computer Software Pro-
tection: A Practical Handbook on Copyrights, Trademarks, Publishing and Trade
Secrets (1985); Frederic William Neitzke, A Software Law Primer (1984); Thomas J.
Smedinghoff, The Legal Guide to Developing, Protecting and Marketing Soft-
ware: Dealing with Problems Raised by Customers, Competitors and Employees
(1986).
 160. Keet, supra note 144. For a history of ADAPSO, see Jerome L. Dreyer, The
ADAPSO Story, Datamation, Mar. 1970, at 55. The ADAPSO software protection committee
was formed in the mid-1960s. There are no known records of the committee, although former
officers of the committee gave a retrospective account at the Intellectual Property Issues
Workshop at a recent ADAPSO Reunion. Software History Center, ADAPSO Reunion
Transcript, May 2–4, 2002 (2003).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

222 Michigan Telecommunications and Technology Law Review [Vol. 11:191

follow the Constitutional plan for intellectual property. It does
not “promote the Progress of Science and Useful Arts.”

—Robert B. Bigelow161

In the late 1970s the personal computer revolution changed the mar-
ket dynamics for software products. Whereas in the 1970s a successful
mainframe program might have cost upward of $10,000 and sold only a
few hundred copies, a successful personal computer software product
typically cost $500 and sold several hundred thousand copies. For exam-
ple, by late 1983 it was estimated that VisiCalc, the pioneering
spreadsheet, had sold 700,000 copies at $250, and WordStar, the leading
word processing package, had sold 650,000 copies at $495.162

A central IP concern for mass market software was piracy. Because
mainframe packages had been directly purchased and controlled by cor-
porate information systems departments, piracy was virtually
unknown.163 However, personal computer packages were often directly
acquired by user departments or by individuals. These classes of users
were generally less concerned about piracy than a corporate IS depart-
ment. Piracy was rife in personal computer software, and as late as 1994
there was estimated to be one pirated copy for every legitimate copy of a
software product.164 Copyright law was fairly well positioned to protect
against this sort of unauthorized copying of an actual software program.
However, copyright law was expected to do double duty by also protect-
ing against theft of the intellectual content of a software product by a
competitor. To facilitate this protection regime, in 1970 the Copyright
Office extended copyright protection to a machine readable version of a
program and no longer required an inventor to deposit the source code.
Much of the contemporary debate about software protection was mud-
died by use of copyright to attempt to protect both the code and
functions of a program against appropriation by competitors.

Copyright protection was designed to protect only the expression of
work, not its function. In the 1980s, this limitation of copyright protec-
tion appeared to legitimize the efforts of competitors of best-selling
products to reverse engineer the program and create a competing clone
product. Reverse engineering did not require the direct copying of code,
but rather created a functional replica by the observation of the pro-

 161. Bigelow, supra note 121, at 37.
 162. See Efrem Sigel, Communications Trends, The Business/Professional Mi-
crocomputer Software Market, 1984–86, at 38 tbl.3.3 (1984).
 163. Software History Center, supra note 160 at 123.
 164. Bus. Software Alliance & Software and Info. Indus. Ass’n, 1998 Global
Software Piracy Report, at http://www.bsa.org/usa/press/newsreleases/loader.cfm?url=/
commonspot/security/getfile.cfm&PageID=21740 (May 1999).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 223

gram’s black-box behavior.165 Copyright law had already been shown to
extend beyond literal copying. Cloning of computer programs was lik-
ened to the misappropriation of a plot in a play, something the courts
found manifestly unfair.166

The most important reverse engineering cases were those between
the Lotus Development Corp. and three firms that cloned its 1-2-3
spreadsheet.167 Lotus v. Paperback Software was the first to come to
court.168

Lotus introduced its 1-2-3 spreadsheet in January 1983 for the IBM
PC.169 During the next two years, the IBM-compatible PC became an
industry standard and sales of 1-2-3 soared.170 Paperback Software intro-
duced its VP-planner spreadsheet in 1987.171 It was self-described as
being “keystroke for keystroke” compatible with 1-2-3, and relied on its
low price of $99 to generate sales.172 There was no claim of theft of 1-2-
3’s source code; VP-planner had been written from the ground-up to
emulate the behavior of Lotus 1-2-3. Lotus was extremely vulnerable to
competition of this kind. Lotus had gained its market position by early
entry, huge investments in publicity,173 and product refinement based on

 165. Indeed, cautious cloners sometimes adopted “clean room” techniques to ensure that
it could be proved no actual copying of code had taken place.
 166. Dennis S. Karjala, The Relative Roles of Patent and Copyright Protection of Com-
puter Programs, 17 J. Marshall J. Computer & Info. L. 41, 53 (1998).
 167. Competitors of Lotus 1-2-3 included: Paperback Software’s VP-planner, Mosaic
Software’s The Twin, and Borland International’s Quattro. Discussions of the Lotus look-and-
feel lawsuits are given in Bernard A. Galler, Software and Intellectual Property
Protection 91–104 (1995); Lawrence D. Graham, Legal Battles that Shaped the
Computer Industry 56–58, 62–68 (1999); Pamela Samuelson, Legally Speaking: How to
Interpret the Lotus Decision (And How Not To), Comm. ACM. Nov. 1990, at 27. Lengthier
discussions include Dennis S. Karjala & Peter S. Menell, Brief Amicus Curiae: Applying Fun-
damental Copyright Principles to Lotus Development Corp. v. Borland International, Inc., 10
High Tech. L.J. 177(1995); Pamela Samuelson, Computer Programs, User Interfaces, and
Section 102(b) of the Copyright Act of 1976: A Critique of Lotus v. Paperback, 6 High Tech.
L.J. 209 (1991).
 168. The court decisions of Lotus against it’s competitors are: Lotus Dev. Corp. v. Bor-
land Int’l, Inc., 49 F.3d 807 (1st Cir. 1995); Lotus Dev. Corp. v. Borland Int’l, Inc., 799 F.
Supp. 203 (D. Mass. 1992); Lotus Dev. Corp. v. Borland Int’l, Inc., 788 F. Supp. 78 (D. Mass.
1992); Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37 (D. Mass. 1990).
 169. See Campbell-Kelly, supra note 22, at 332.
 170. See Lotus’s One Millionth Software Package, Lotus, Jun. 1985, at 7 (reporting that
1-2-3 was priced at $495 and had sold a million copies by mid-1985).
 171. For a comprehensive history of spreadsheets, see Campbell-Kelly, supra note 22, at
322–347.
 172. The phrase “keystroke for keystroke” used in the judgment appeared in Paperback
Software’s own user manual Paperback Software International, VP-planner, at xi
(1987).
 173. The development and launch costs of Lotus 1-2-3 are detailed in Peter Petre, The
Man Who Keeps the Bloom on Lotus, Fortune, Jun. 10, 1985, at 136–46.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

224 Michigan Telecommunications and Technology Law Review [Vol. 11:191

user feedback. A cloning competitor could free ride on these invest-
ments.

In January 1987 Lotus filed suit against Paperback Software. Be-
cause Paperback Software had not infringed Lotus copyright by direct
copying, Lotus sought to apply the obscure concept of look-and-feel in-
fringement.174

In 1990, the District Court of Boston issued a controversial decision,
finding that Paperback Software had infringed Lotus’ copyright by copy-
ing the menu structure of 1–2–3.175 The decision implied that user
interfaces would have to be significantly different to avoid infringement,
whereas users of competing products benefited by having a common
user interface across applications. As a result of this decision, VP-
planner was withdrawn from the market and Mosaic Software also
pulled its product before its case came to court.

The suit against Borland had a different outcome. Borland had de-
signed its product with two interfaces that the user could choose
between. One interface was Borland’s own, while the other emulated that
of 1-2-3. Like Paperback Software, Borland lost in the lower court. But
Borland won on appeal and the decision was upheld by the Supreme
court against challenge by Lotus.176 The software industry interpreted this
decision to mean that it was acceptable to emulate an interface or menus
to assist in product switching, but that the cloned interface should not be
the primary interface of a program.

Copyright protection of software was an uncertain business. Much of
the reason for the debate over software protection is that programs con-
tain two distinct kinds of intellectual investments. The first is the source
code. Source code is entirely utilitarian: it is prosaic, workmanlike, uni-
maginative grunt work177 that has always been fantastically expensive to
write and debug.178 Copyright protects source code from appropriation in
principle, but not in practice, and for this reason very few for-profit

 174. This concept had had a number of previously successful outings. For example, in
1970 in Roth Greetings Cards v. United Card Co. 429 F.2d 1106 (9th Cir. 1970), the plaintiff
succeeded in a copyright action against a competitor that had published “substantially similar”
greetings cards to its own. The court applied the “total concept and feel” test to find infringe-
ment. Another widely publicized suit was Sid & Marty Krofft Television Productions Inc. v.
McDonald’s Corporation, in which characters in the McDonaldland TV commercials were
found to have infringed characters in the children’s TV program H.R. Pufnstuf. Sid & Marty
Krofft Television Prod. Inc. v. McDonald’s Corp., 562 F.2d 1157 (9th Cir. 1977). On the ori-
gins of look-and-feel, see Graham, supra note 167, at 54–55.
 175. Lotus Dev. Corp. v. Paperback Software Int’l, 740 F. Supp. 37 (D. Mass. 1990).
 176. Lotus Dev. Corp. v. Borland Int’l, Inc., 516 U.S. 233 (1996).
 177. Programmers often talk about the elegance of their programming efforts. However,
such elegance has little economic value. It has the same kind of value that an elegantly worded
memo or email message has over a purely utilitarian one.
 178. See supra note 102 and accompanying text.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 225

mass-market software makers have disclosed their source code.179 The
second intellectual investment is in the functional attributes of the pro-
gram, such as algorithms, data structures, user interfaces and menu
structures. Frequently, even if a publisher only disclosed the binary ver-
sion of the program, a clause was included in the licensing agreement to
expressly forbid code examination for the purpose of reverse engineer-
ing.180 This was an attempt to incorporate trade secrecy as a supplement
to the insufficient copyright regime.

Although source code was almost never disclosed for mass-market
software, disclosure persisted with enterprise software into the 1980s.
Indeed, an entire industry had developed producing complementary
products for IBM’s operating systems, database systems and teleprocess-
ing products. The industry only existed by virtue of access to IBM’s
source code. However, in March 1983, IBM announced its Object Code
Only (OCO) policy, by which it ceased to supply the source code of its
software products.181 IBM stated at the time of the OCO announcement
that it would provide “application program interfaces”—now known as
APIs.182 However, at that time the phrase was a neologism, and IBM’s
competitors argued that IBM was incapable of defining satisfactory in-
terfaces to allow seamless integration with IBM’s programs. The IBM
user group SHARE and the software industry trade association ADAPSO
lobbied without success to have the OCO policy reversed; gradually the
protests faded away.183

In 1987 IBM announced its System Application Architecture (SAA),
a program by which it formally published APIs for all its software prod-
ucts.184 This made the publication of APIs much more formal and
systematic. Indeed, trade secrecy and the evolution of published APIs

 179. Although the Netscape Corporation has recently disclosed the source code of its
Communicator web browser, this appears to be a tactical ploy in its longstanding battle with
Microsoft over web browser supremacy.
 180. For example, Microsoft’s standard license agreement of the late 1980s contained
the clause, “You may not modify, adapt, translate, reverse engineer, decompile, disassemble,
or create derivative works based on the [software].”
 181. Ralph Emmett Carlyle & Jeff Moad, IBM and the Control of Information, Datama-
tion, Jan. 1, 1988, at 34, 38, 41, 44. Martin Goetz & Peter Schneider, Object Code Only: Is
IBM Playing Fair? CCoommppuutteerr WWoorrlldd,, Feb. 8, 1988, at 55, 58–59, 62, 66.
 182. See Carlyle & Moad, supra note 181, at 44.
 183. The ADAPSO petition was withdrawn after IBM agreed to give independent soft-
ware companies assistance with problems related to source code access. Willie Schatz,
ADAPSO Withdraws Opposition to IBM’s Object Code Stance, Datamation, Oct. 1, 1988, at
17.
 184. See generally Michael Killen, IBM: The Making of the Common View
(1988); L. Robert Libutti, Systems Application Architecture: The IBM SAA Strat-
egy (1990).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

226 Michigan Telecommunications and Technology Law Review [Vol. 11:191

can be viewed as a technological solution to the failure of copyright to
adequately protect source code from appropriation by competitors.185

Under the regime of trade secrecy, algorithms and data structures
remained secret and consequently quite complex techniques (spelling
checkers in word processors, say) have been endlessly reinvented by
other developers for other programs needing the same functionality. Pro-
vided they meet the novelty requirements of patent law, algorithms, data
structures, user interfaces, and menu structures are all patentable subject
matter. Such patents have the major benefit of disclosing techniques oth-
erwise locked up in binary programs.

VI. Patents and Disclosure

Software from UK company Pixology is claimed to be the first
technology for correcting the red eyes that come up in photo-
graphs taken with flash cameras. Its Iriss software removes red-
eye, which is caused by the reflection of the flash light from the
thin capillaries at the back of the eye, intensified by the lens in
front of the eye. Pixology’s technical director, Mike Stroud, says
“It’s a secret how we do it. All I will say is that Iriss does not
look for the eyes in a photo.”

—Computer Bulletin, November 2003, p. 21

The U.S. Patent Act of 1790 was introduced to prevent exactly the
kind of trade secrecy suggested by the above quotation. The firm Pixol-
ogy is based in Europe, where pure software innovations are not
currently patentable. Although copyright protection for software exists in
Europe, this would not protect Pixology against a competitor imitating
its technology. Hence Pixology’s reliance on trade secrecy.

A controversial and well known software patent for the LZW data
compression algorithm clarifies a difference between copyright and pat-
ent protection.186 The LZW algorithm is named for its inventors Abraham
Lempel, Jacob Ziv, and Terry Welch. A data compression algorithm con-
stitutes a technique for reducing in size a quantity of binary data. Most
computer data is highly redundant, and compression of 90 percent is not
uncommon. The particular advantage of the LZW algorithm is its sim-

 185. Of course, APIs have many other functions besides concealing source code. They
are analogous to the standard interfaces used throughout the engineering industry.
 186. For competing views of two computer scientists on the legitimacy of the LZW pat-
ent, see Stallman & Garfinkle, supra note 2; and Paul Heckel, Debunking the Software Patent
Myths, Comm. ACM, June 1992, at 121, 133.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 227

plicity and speed. Using only modest computer power, it enables images
to be compressed and decompressed almost instantaneously.

Terry Welch applied for a patent for the algorithm in June 1983,
which was subsequently assigned to his employer Unisys. A year later a
description of the compression method was published in IEEE Com-
puter, a widely read technical magazine.187 The disclosures through the
patent and article provided an exemplary description of the invention,
both in terms of an “apparatus” (a set of electronic registers and control
signals), and as an algorithm in the form of a set of four FORTRAN sub-
routines consisting of approximately 110 lines of code. Anyone wanting
to use the LZW algorithm could purchase a license from Unisys and
copy the FORTRAN routines (or transliterated routines) into their own
program. The patent expired in June 2002; since then, anyone has been
free to use this method without a license. It is difficult to think of a more
conventional or appropriate use of the patent system.

If instead of patenting LZW, only copyright applied, copyright
would protect the FORTRAN exposition of the algorithm, but it would
not protect the algorithm itself. Anyone would be free to use the algo-
rithm, perhaps writing it in another programming language such as C or
Java, or even in FORTRAN provided the implementation was suffi-
ciently distinct. Copyright would effectively confer no protection at all.
As discussed above, without software patents, this lack of protection in
the copyright regime leads to greater use of trade secrecy and less public
disclosure.

The LZW patent did not have the effect of stifling competition; it
encouraged it. Inventors had access to a very precise description of the
LZW code and were free to improve it or to circumvent it in a non-
infringing manner.188 However, LZW remains a very good compression
tool, although ever-improving computer speeds have reduced its speed
advantage.

Much of the controversy over the LZW patent concerned its exploi-
tation by Unisys. Welch’s publication in IEEE Computer in 1984 did not
state that a patent had been applied for. This article was widely read by
the software community, and the technique was presumed to be in the
public domain. As a result, the algorithm quickly diffused into many

 187. U.S. Patent No. 4,558,302 (issued Dec. 10, 1985). Terry A. Welch, A Technique for
High Performance Data Compression, Computer, Jun. 1984, at 8. Computer is the flagship
magazine published by IEEE for the diffusion of knowledge among its computer and elec-
tronic-engineering professional membership. Unlike patents and the academic literature,
Computer is widely read by practitioners.
 188. In fact, at the time of writing there are 185 patents in the USPTO database citing
LZW as prior art, and several hundred patents have been granted for data compression tech-
niques since LZW was issued. Author’s estimates based on USPTO website searches, Apr. 4,
2005.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

228 Michigan Telecommunications and Technology Law Review [Vol. 11:191

computer technologies requiring data compression, including imaging
systems, modems, and laser printers. Most significantly, it was used in
the Graphics Interchange Format (GIF), a popular image compression
technique developed for the CompuServe consumer network in 1987. At
that time, the bandwidth of consumer networks was so limited that the
use of images would have been infeasible without compression. Un-
aware of the existence of the LZW patent, CompuServe made GIF’s
available “for use in computer software without royalties, or licensing
restrictions.”189 With the rise of the World Wide Web in the early 1990s,
GIFs probably accounted for more network traffic than any other file
type. The particular advantage of the LZW technique was that it enabled
images to be decompressed and rendered on a computer screen almost
instantaneously using modest PC hardware.

In 1990, Unisys asserted its intellectual property rights and de-
manded royalties from users of the patent. The software community was
outraged, provoking many to abandon GIFs in favor of public domain
JPEG images. Infringers who were locked into using GIFs or LZW
compression reluctantly bought licenses from Unisys. In a 2003 press
release, Unisys stated that almost 3000 license agreements had been is-
sued worldwide by the time the U.S. patent expired.190

What affronted much of the software-writing community was what
amounted to deception. Software developers had been led to believe the
technique was in the public domain, only to have a patent enforced when
users reached the point of no return. Although the LZW technique was
deserving of a patent, data compression techniques are not difficult to
substitute. Had the need to pay royalties for LZW been known, adequate
royalty-free substitutes would likely have been developed by the open
source community and incorporated into derivative products in lieu of
the LZW algorithm.191 However, it is a poor argument to cite this mal-
practice to condemn software patents in general.

As the examples of the punched-card machines and typewriters dis-
cussed earlier in this article illustrate, patents have played a powerful
role in the cumulative improvement of inventions. Public-key encryption
provides a compelling example of cumulative improvement in the do-

 189. Graphics Interchange Format (GIF) Specification, at http://www.w3.org/Graphics/
GIF/spec-gif87.txt (Jun. 15, 1987).
 190. See “LZW Patent and Software Information: License Information on GIF and Other
LZW-based Technologies,” Unisys Corporation website, at http://www.unisys.com/about__
unisys/lzw (visited Jul. 11, 2003). The press release is no longer available on Unisys’ website,
but a copy has been archived on an open-source website at http://www.sslug.dk/patent/
lzwunisys.html
 191. Supra note 16.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 229

main of software.192 This encryption technique has been described by a
historian of cryptography, Simon Singh, as the most important develop-
ment in cryptography in 2000 years.193

Prior to public-key encryption, the most widely used technique was
the data encryption standard (DES), patented by IBM in 1976.194 At that
time, secure computer communications were primarily used in the civil-
ian sector for the transmission of high value funds between financial
institutions. In DES, users employed a common encryption-decryption
algorithm, relying on a unique key shared between parties to ensure
communications could not be deciphered. To guarantee security, the keys
had to be distributed by a courier at considerable expense. As a result,
DES encryption was practical only for high value transactions.195

The invention of public-key cryptography is one of the most fasci-
nating scientific success stories of the twentieth century.196 Whereas in
private-key encryption, the keys have to be kept secure, in public-key
ciphers this is not necessary. As a result, the cost of key distribution is
eliminated.197 The feasibility of public-key encryption was discovered by
two Americans, Martin Hellman and Whitfield Diffie, working from
Stanford University. Diffie and Hellman filed a patent for public-key
cryptography, the technology that today underpins secure Internet com-
merce, in September 1977 and assigned the patent to Stanford
University.198

One more piece of the puzzle remained. Diffie and Hellman had
proven the feasibility of public-key encryption; they had not yet identi-
fied a fast, practical algorithm. This was achieved a few months later
with the RSA algorithm, named for its inventors Ronald Rivest, Adi
Shamir, and Leonard Adleman all of whom were MIT faculty. Rivest,
Shamir, and Adleman filed for a patent in December 1977, assigning
rights to their employer, MIT.199 In 1983, MIT licensed the technology to

 192. Good histories of public-key cryptography include Simon Singh, The Code Book:
The Science of Secrecy from Ancient Egypt to Quantum Cryptography (1999);
Levy, supra note 29.
 193. Singh, supra note 192, at 123.
 194. U.S. Patent No. 3,798,359 (issued Mar. 19, 1974).
 195. For an authoritative technical and historical account of DES, see Davies & Price,
supra note 141, at 47–78. Besides being an inventor of packet switching used on the Internet,
the late Donald Davies was an accomplished amateur historian of cryptography. See also Wil-
liam E. Burr, Data Encryption Standard, in A Century of Excellence in Measurements,
Standards, and Technology, at 250–253 (David R. Lide ed., 2001).
 196. The following historical account is based on Singh, supra note 192, at 120–130.
 197. The public-key encryption technique, which sounds impossible at first encounter, is
based on the use of “one-way” mathematical functions. An authoritative technical description
is given in Davies & Price, supra note 141, at 209–251.
 198. U.S. Patent No. 4,200,770 (issued Apr. 29, 1980).
 199. U.S. Patent No. 4,405,829 (issued Sept. 20, 1983).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

230 Michigan Telecommunications and Technology Law Review [Vol. 11:191

RSA Data Security Inc., for which the inventors served as consultants.200
With the rise of the Internet, the RSA algorithm provided a low-cost
mechanism for secure, low-value financial transactions. The technology
was licensed inter alia for Microsoft’s Internet Explorer and Netscape’s
Communicator web browsers, where it now underpins virtually all small
consumer transactions. The company was sold for $200 million in 1996.
Today, RSA Security has nearly 14,000 customers, technology partners
for over 1000 products and annual sales of $260 million.201 Although the
original RSA patent expired in 2000, RSA Security remains well placed,
with more than thirty subsequent patents.202 Indeed, the RSA patent was
the foundation of a wave of innovation: no less than 350 cryptography
patents cite RSA as prior art. Moreover, because there is no trade se-
crecy, university research and teaching of encryption technology is
thriving.203

The downside of patenting is that it can provide rough justice for
some. For example, Michael Williamson and Clifford Cocks of the Brit-
ish government’s code-breaking operation GCHQ (Government
Communications Headquarters) independently invented public-key en-
cryption before Diffie and Hellman, but never disclosed or patented the
invention.204 Because of the first-to-file rule, Britain was obliged to pay
to use the RSA algorithm, just like anyone else. Patents can also exclude
newcomers. In the late 1980s, while RSA Data Security Inc. catered to
the military and business markets, a computer programmer and political
activist Phil Zimmerman wanted to bring public-key encryption to the
ordinary PC user.205 He called his system PGP, for Pretty Good Privacy.206
Inevitably PGP infringed the RSA patent, and Zimmerman was further
embroiled in a government prosecution for exporting military technol-
ogy without a license. Ultimately, PGP leaked out and the RSA patent
was close enough to expiration not to be worth pursuing. The world got
its Pretty Good Privacy.

 200. Levy, supra note 29.
 201. RSA Security Inc., Annual Report, at 5, 6, 12 (2003).
 202. Id. at 8.
 203. There are several peer-reviewed journals in computer security and cryptography and
dozens of textbooks and practical guides for university courses.
 204. Singh, supra note 192, at 123.
 205. For a good history of PGP, see generally Simson L. Garfinkel, PGP: Pretty
Good Privacy (1994).
 206. “Pretty Good Privacy” was an homage to Ralph’s Pretty Good Groceries in Garri-
son Keillor’s Prairie Home Companion. Levy, supra note 29, at 195.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 231

VII. Business Method Patents

Supposedly, in order to be patented, something has to be new,
useful and unobvious. . . . Of course, when the patent office gets
into the game, they start interpreting new and unobvious. New
turns out to mean we don’t have it in our files and unobvious
tends to mean unobvious to someone with an IQ of 50.

—Richard Stallman207

The above quotation from Richard Stallman is typical of the antago-
nism toward software patents, and especially business method patents,
that appears on the World Wide Web. There is unquestionably a problem
concerning the threshold of obviousness, but the rhetorical assertion that
“unobvious tends to mean unobvious to someone with an IQ of 50” does
not get anywhere near the heart of the problem.208

The amazon.com “1-click” patent attracts more attention than any
other for its apparent obviousness.209 The standard method of purchasing
from a website is to place the goods in a virtual shopping cart, then to
provide shipping information at checkout and to authorize payment by
credit card. Amazon.com replaces this often-tedious process with “1-
click” ordering. Once 1-click has been activated, the user simply clicks
on items and all the minutia of payment and delivery are completed on
the basis of information already stored in Amazon’s database.

The patent may look trivial and obvious, but this is a judgment made
in hindsight, and the popular debate is often uninformed by the nature of
invention or the mechanisms of disclosure. Examination of the 1-click

 207. Richard Stallman, Software Patents—Obstacles to Software Development, Lecture
at the Computer Laboratory, University of Cambridge (Mar. 25, 2002), at http://
www.cl.cam.ac.uk/~mgk25/stallman-patents.html.
 208. Good discussions on the obviousness of business method patents include Adam B.
Jaffe & Josh Lerner, Innovation and Its Discontents (2004); Ron Laurie & Robert
Beyers, The Patentability of Internet Business Methods: A Systematic Approach to Evaluating
Obviousness, in Copy Fights: The Future of Intellectual Property in the Informa-
tion Age 237–71 (Adam Thierer et al. eds., 2002); Robert Merges, As Many as Six
Impossible Patents Before Breakfast: Property Rights for Business Concepts and Patent Sys-
tem Reform 14 Berkeley Tech. L.J. 577 (1999).
 209. The patent is examined in many scholarly discussions of business method patents,
both pro and con. Bronwyn H. Hall, Business Method Patents, Innovation, and Pol-
icy (NBER Working Paper No. 9717, 2003); Starling David Hunter, Have Business
Method Patents Gotten a Bum Rap? Some Empirical Evidence (MIT Sloan School of
Management, Working Paper No. 182, 2003); Keith Maskus & Eina Wong, Searching for
Economic Balance in Business Method Patents, 8 Wash U.L.J. & Pol’y 289, 292, 299 (2002);
Dreyfuss, supra note 36; Peter Wayner, How Can They Patent That?, in Copy Fights: The
Future of Intellectual Property in the Information Age 221–28 (Adam Thierer et al.
eds., 2002).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

232 Michigan Telecommunications and Technology Law Review [Vol. 11:191

patent shows that the technology involved is not trivial by the standard of
inventions in general. The specification consists of 6 pages of text and 11
pages of drawings.210 The invention involves the deployment of web and
database technologies, and has the added complication that multiple 1-
click orders have to be integrated into a single shipment, with minimal
shipping cost, and a single charge deducted from the customer’s credit
card. The 1-click invention is not out of line with the threshold of pat-
entability in other fields. The patent examiner granted the patent, not
because she was incompetent, but because the invention met the conven-
tional thresholds of novelty, obviousness and inventiveness.

One reason that critics consider the 1-click patent to be obvious, is
that the level of skill needed to implement it is not particularly high.
(This criticism is often made by programmers who have an exceptional
level of skill, such as Richard Stallman. It is rather like a concert pianist
assuming every saloon-piano player shares his or her level of skill.) In
fact, implementing the 1-click process on a website would demand the
skills typically found in a computer science graduate or a substantially
experienced journeyman programmer.

However, patents cannot be judged on the basis that they do not look
unduly complicated or difficult to implement. Many, perhaps most, pat-
ents would fail by that test; Hollerith’s stop card patent was certainly not
difficult, but few would argue it was unpatentable. Patents that seem ob-
vious are often only obvious in hindsight, because a patent discloses the
invention but not the process of discovery. It is rather like a mathemati-
cal theorem or a poem—if it is done well, the pain of creation is not
perceptible. In the case of the 1-click patent, we do know something of
the discovery process.211 Amazon.com’s founder Jim Bezos has long held
a mission “to make Amazon.com ‘the most customer-centric’ company
in history.”212 The company is considered to be the first Internet retailer
to use a “wizard” approach to order processing—taking the customer
through a series of steps to complete a purchase, with the option of ad-
vancing or going back a step at each stage. In this context, 1-click can be
seen as the next stage in an evolutionary inventive process. Bezos claims
that developers spent “thousands of hours” perfecting the process. For
example:

When we did focus groups and tested this new feature before
launching it, the biggest problem was that people didn’t think
they had really finished the order. . . . So we had to change the
text surrounding this thing to not only say “Thank you for your

 210. U.S. Patent No. 5,960,411 (issued Sept. 28, 1999).
 211. See generally Robert Spector, Amazon.com: Get Big Fast (2000).
 212. Id. at 126.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 233

order”, but in parenthesis it now says “Yes, you really did place
an order.”213

The devil is in the details, and the 26 claims of the patent are full of such
details.

No one had used 1-click ordering on the web before. After Ama-
zon.com began using the system in late 1997, it was imitated by several
on-line merchants including Amazon.com’s principal competitor Barnes
and Noble. Amazon.com filed an infringement suit against Barnes and
Noble in October 1999. This led to an outcry from the Internet commu-
nity, and the Free Software Foundation launched a “Boycott Amazon!”
campaign.214 The suit was eventually settled out of court, although the
terms have not been disclosed.215

It is not the purpose of this article to advocate the merits of the 1-
click patent. That has been amply and inconclusively discussed else-
where. Rather, this article does attempt to encourage recognition that
business method patents can be genuinely innovative, involve costly in-
vention, and meet the normal criteria of patentability. Moreover, in the
same way that some early patents can now be seen to embody algorithms
(as discussed in section 4 of this article), there are early patents that can
retrospectively be classed as business method patents.216

There is a common perception that patents have been granted for
taking any real world invention and putting it on the Internet. This is a
distortion; it is true only to the extent that an Internet-based invention
passes the normal thresholds of usefulness, novelty and non-
obviousness. To disallow inventions solely on the grounds that they are
implemented through the Internet would be to fail to recognize the virtu-
alization of inventions that has gone on since World War 2.

An instructive example of the virtualization of inventions that is cur-
rently taking place is the “virtual postage meter,” by which firms and
individuals can purchase postage stamps and prepaid mailing labels
through the Internet.217 The virtualization of postage meters was intro-
duced in section 4. Virtual postage meters have now been in existence

 213. Id. at 153.
 214. Steven Levy, The Great Amazon Patent Debate, Newsweek, Mar. 13, 2000, at 74.
 215. Richard S. Grunner, Everything Old is New Again: Obviousness Limitations on
Patenting Computer Updates of Old Designs, 9 B.U. J. Sci. & Tech. L. 209, 237 (2003).
 216. For example, the following two patents for insurance quotations, dated 1919 and
1999, incorporate essentially the same business methods. U.S. Patent No. 1,314,146 (issued
Aug. 26, 1919) (illustrating projections using a cardboard calculator); and U.S. Patent No.
5,956,691 (issued Sept. 21, 1999) (illustrating projections using a computer screen).
 217. Damon Darlin, Innovate or Die, Forbes, Feb. 24, 1997, at 108; Stephen Manes,
Going Postal—Digitally, Forbes, Sept. 6, 1999, at 228.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

234 Michigan Telecommunications and Technology Law Review [Vol. 11:191

for ten years and have an appreciable business history.218 They are a lens
through which we can further examine the role of patents in Internet-
based inventions.

There have been five significant players in virtual postage meter-
ing—three entering the postage industry strictly as Internet-providers, E-
Stamp, Stamps.com, and Endicia; and two that were in the postage mar-
ket prior to their Internet implementations, Pitney Bowes’s ClickStamp,
and Neopost’s Simply Postage. Of the new entrants, the first mover was
E-Stamp, whose founder Salim Kara applied for a patent in 1994, issued
in 1996219 E-Stamp was followed by Stamp.com (with no patent) and
Endicia (with a patent issued to its CEO Harry Whitehouse in 1999).220
The firms began trading in 1999-2000 when US Post Office approval
had been granted. The incumbents Pitney Bowes and Neopost entered
somewhat later, again with their own patents.221

In 1999 Pitney Bowes filed an infringement suit against E-Stamp
and Stamp.com, subsequently settled with a cross-licensing agreement
with “no material financial payment.”222 It is tempting to characterize the
new entrants as David and the incumbents as Goliath. It is as if the new-
comers got to the party first and then the incumbents muscled in only
when the former had established the viability of the business. The his-
tory is more complex than this. The incumbents were caught in a classic
situation characterized as a disruptive technology.223 Unlike the new en-
trants with no history, the incumbents were major firms that had to
radically re-engineer their business model in a way that sustained their
current operations while migrating to the new world; the transition is still
in progress. It is not unlike the painful transition that IBM had to make
to adapt to the personal computer. In both cases, to portray the incum-
bents as technological dinosaurs only waiting in the wings ready to
stomp on the newcomers is too simplistic.

There are some empirical observations one can make from the vir-
tual postage meter story. First, there is no monopoly; the market has

 218. Competition Commission (UK), Neopost SA and Ascom Holding AG: A Re-
port on the Proposed Merger 61-64(2002), at http://www.competition-commission.org.uk/
rep_pub/reports/2002/465neopost.htm (last visited May 8, 2005).
 219. U.S. Patent No. 5,510,992 (issued Apr. 23 1996). Several patents were granted to
Kara subsequently.
 220. U.S. Patent No. 6,005,945 (issued Dec. 21, 1999), and subsequent patents.
 221. Pitney Bowes: U.S. Patent No. 6,064,993 (issued May 16, 2000), and subsequent
patents. Neopost: U.S. Patent No. 6,424,954 (issued Jul., 23, 2002), and subsequent patents.
 222. Press Release, Stamps.com, Pitney Bowes and Stamps.com Settle Patent Infringe-
ment Litigation (Dec., 22 2003), at http://www.stamps.com/company/news/20031222a (last
visited May 8, 2005).
 223. Joseph L. Bower & Clayton M. Christensen, Disruptive Technologies: Catching the
Wave, Harv. Bus. Rev., Jan.–Feb. 1995, at 43.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 235

sustained both newcomers and incumbents. The existence of patents has
not allowed a first mover to enjoy a monopoly, but it has discouraged
non-innovating imitators. Because the newcomers had strong patent po-
sitions, they were not immediately out-gunned by the powerful
incumbents. Second, the incumbents have been tested by truly powerful
competitive forces, probably more dramatic than at any time in their his-
tory. One should note that Pitney Bowes is a very innovative firm, when
measured by patent activity; it has a portfolio of 3000 patents, and makes
200–300 new applications a year.224 If Pitney Bowes had been non-
innovating, it would not have survived the transition to virtual postage
meters. Third, a lot more is required to succeed than having a sound pat-
ent position. There has been shake-out and consolidation in the industry,
particularly following the dot-com bust. Finally, although a virtual post-
age meter is a totally intangible invention, the virtual meter can infringe
on existing postage meter patents, themselves the fruit of costly R&D
investments. It is difficult to draw a line. If patents were wholly disal-
lowed for Internet-based inventions, then any present-day artifact
capable of virtualization would be vulnerable to emulation regardless of
prior R&D investments. In this regard, virtual postage meters are in the
vanguard of a change that may sweep across manufacturing to a degree
we cannot yet predict.

VIII. Broad Prospects and Reverse Salients

A salient is a protrusion in a geometric figure, a line of battle, or
an expanding weather front. As technological systems expand, re-
verse salients develop. Reverse salients are components in the
system that have fallen behind or are out of phase with the others.

—Thomas P. Hughes225

For the last 20 years, the history of technology has been dominated
by a theory of technological advance that is frequently referred to as the
Social Construction of Technology (or “SCOT”). A leading protagonist
of this theory, Thomas Hughes, has used the military metaphor of the
“reverse salient” to illustrate the theory. It is as if technology advances
along a broad front, but from time to time, part of the front fails to keep

 224. Pitney Bowes Ranks in Top 200 Companies Receiving U.S. Patents for 14th Con-
secutive Year, Bus. Wire, Apr. 13, 2000, at http://www.findarticles.com/p/articles/mi_m0EIN/
is_2000_April_13/ai_61475928.
 225. Thomas P. Hughes, The Evolution of Large Technological Systems, in The Social
Construction of Technological Systems: New Directions in the Sociology and
History of Technology 51, 73 (W.E. Bjiker et al. eds., 1987).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

236 Michigan Telecommunications and Technology Law Review [Vol. 11:191

up with the general advance. At that point additional technological war-
riors move to the reverse salient and seek to push it forward. These
technological warriors are not typically lone inventors operating in trade
secrecy, but individuals and firms that cooperate through information
disclosure in order to solve the critical problem.226

The history of information processing affords many compelling ex-
amples that validate the SCOT perspective. For example in the late
1940s a critical problem in computing was that random access memory
was slow and unreliable, and this led to the development of magnetic
core memory.227 In 1949 a new magnetic ceramic Deltamax hit the mar-
ket. In the words of a contemporary memory researcher, “It was
completely obvious that you could make a memory with this material.”228
Numerous players entered the field, including IBM, RCA, several lesser
firms such as Wang Laboratories, and university research laboratories
including MIT and the University of Illinois. The first two related patents
were filed by RCA and MIT’s Jay Forrester in 1950–51.229

It was at about this time that IBM decided to enter the computer
business. Its first computers used the existing memory technologies but
they proved too unreliable for a high-volume, commercial product.230 For
its model 704 computer, to be delivered in 1954, IBM decided to use
core memory. As there were no commercially available products, IBM
launched its own development program.231 IBM had a patent sharing
agreement with RCA, started a negotiation with MIT, and set to work.232
The core memory for the 704 was a technological improvement over the
existing technologies, but was prohibitively expensive. The 4096 word233
memory for the 704 rented for $6,100 a month (equivalent to a manufac-
turing cost of $1.31 per bit).234 IBM, however, worked on improving the
technology; it acquired several more patents and developed its own pat-
ented innovations. Protected by its patents, IBM was able to subcontract
manufacture to specialists instead of investing in costly fabrication
plants. However, as the market for computers boomed, IBM went into

 226. Id.
 227. See generally Emerson W. Pugh, Memories That Shaped an Industry: Deci-
sions Leading to IBM System/360 (1984).
 228. Id. at 82.
 229. U.S. Patent No. 2,736,880 (issued Feb. 28, 1956) (filed 1951, assigned to MIT);
U.S. Patent No. 3,164,813 (issued Jan. 5, 1965) (filed 1950, assigned to RCA). Both patents
describe small but scaleable memory systems based on magnetic cores. The patents are dis-
cussed in detail in Pugh, supra note 227, at 81–87.
 230. Pugh, supra note 227, at 138.
 231. Id.
 232. Bashe et al., supra note 56, at 269.
 233. Here, a “word” is equivalent to 32 bits, or 4 bytes.
 234. Pugh, supra note 227, at 138.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 237

full scale production in its own right. IBM improved not only in the de-
sign of the memory, but also the manufacturing processes, producing
cheaper, smaller, faster cores. In the fifteen years from 1955 to 1970, the
cost of core memories fell by a factor of 200.235 In 1968, however, IBM
abandoned its research into core memory. The new technology of mi-
croelectronics promised semiconductor memories (the kind we use
today) and another cycle of innovation started.

The way in which the patent system facilitated the development of
core memory was not universally beneficial. The primary benefit was
that it enabled information sharing. Instead of several laboratories oper-
ating in trade secrecy, their inventions were disclosed and became
available to all, subject to the intellectual property rights of the owners.
The downside was that the owner of one crucial patent could hold the
others to ransom. In this case, MIT’s Research Corporation was the
hold-out, initially seeking a 2 cents per bit royalty. IBM argued that if all
the 13 patents involved were licensed on the same basis “the cost per bit
would be twenty-six cents, making core storage economically infeasi-
ble.”236 IBM also believed that one day core memories would account for
billions of bits of storage. IBM refused to take out a license with the
MIT Research Corporation, which responded with an infringement suit.
IBM ultimately conceded to pay $13,000,000, said to be the largest pat-
ent settlement ever made up to that date.237 However, IBM believed that it
was only the $26 million invested by IBM in core memory development
that made the Forrester patent so valuable.238 IBM was so affronted, it cut
off its long-standing diplomatic relationship with MIT, and IBM’s Presi-
dent Thomas Watson Jr. resigned from the board of trustees of MIT.239
Between royalties and the cost of litigation, the core memory patents did
not come cheap. Still, IBM has not lost faith in the patent system; in-
deed, today it takes out more patents than any other firm in the world.240
Although software patents occasionally seem unjust, it has to be kept in
mind that such unfairness is not unique to software; it is an unfortunate
by-product of the patent system that affects all industries.

 235. Id. at 245.
 236. Id. at 209.
 237. Bashe et al., supra note 56, at 270. It should be noted that IBM cut a good deal.
By 1963, it was making a billion cores a year; by 1970, 20 billion a year. See Pugh, supra
note 227, at 245.
 238. Pugh, supra note 227, at 212.
 239. James W. Birkenstock, “Pioneering: On the Frontier of Electronic Data Processing,
a Personal Memoir,” IEEE Annals Hist. Computing Jan.–Mar. 2000, at 4, 29.
 240. IBM was granted 3411 U.S. patents in 2001. The top-ten patenting firms were
NEC, Canon, Micron Technology, Samsung, Matsushi, Sony, Hitachi, Mitsubishi, and Fujitsu.
Patenting by Organizations 2001, supra note 41, at B1-1.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

238 Michigan Telecommunications and Technology Law Review [Vol. 11:191

Computer memory is no longer a critical problem for the computer
industry. Today, many of the reverse salients are on the software front.
These are major technological barriers that will not likely be solved by
solitary inventors, and probably not by the research laboratories of indi-
vidual firms, but through the combined efforts of industry and university
researchers. Two topical examples of such critical problems are screen
rendering and speech recognition.

For several years the market for electronic books has failed to take off.
One reason for this failure is that reading from today’s computer screens is
impractical and uncomfortable compared with reading from a printed
page. It is impractical because today’s LCD screens are clunky, power
hungry, and have poor contrast.241 Screen technology is improving, and
many firms are developing next-generation technologies, such as e-paper,
that will eventually fix some of the ergonomic and portability issues.242
These firms are aggressively patenting their hardware innovations, with
little or no media attention. But screen technologies are advancing not just
by hardware improvements but also by software innovations such as
Microsoft’s ClearType and Adobe Systems’ Cool Type.

Today, the resolution of a lap-top screen is about 100 dots or pixels
per inch. This does not begin to compare with the minimum 1000 dots
per inch of a printed book. Because resolution is perceived in dots per
square inch, the perceived resolution difference between a computer
screen and the printed page is a factor of a hundred.

In May 2001, Microsoft obtained its first patent for ClearType tech-
nology.243 The details of ClearType are complex, though the principle is
simple enough. The technology makes use of the fact that on a color
screen each pixel consists of three sub-pixels, one for each of the three
primary colors. Normally, when displaying black characters on a white
background, every sub-pixel is either fully on or off with no gradations
in between. ClearType technology exploits the fact that each sub-pixel
can be individually set to an intermediate brightness. When ClearType
characters are examined under a magnifying glass, one can see that indi-
vidual sub-pixels have been used to smooth out the blocky, jagged edges
of characters and enhance their serifs. A usability guru, Jakob Nielsen,
estimates it improves reading speed by 10 to 15 percent.244

 241. For a user perspective on e-books, see Stephen H. Wildstrom, A New Chapter for E-
Books, Bus. Wk., Mar. 27, 2000, at 8.
 242. Steve Ditlea, The Electronic Paper Chase, Sci. Am., Nov. 2001, at 38–43.
 243. Doon Barker, Pixel Perfect: Silencing Critics . . . Microsoft Receives E-Book Patent,
Tech. Rev., Jun. 2001, at 29; U.S. Patent No. 6,239,783 (issued May 29, 2001).
 244. Jakob Nielsen, Avoiding Commodity Status, Alertbox, at http://www.useit.com/
alertbox/20020203.html (Feb. 3, 2002).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 239

This research is costly. According to Microsoft, its researchers spent
more than two years sifting through a large amount of research related to
both typography and the psychology of reading before even getting
started.245 Nor does Microsoft have the field to itself. Adobe Systems, the
firm behind the ubiquitous PDF portable document format, has its own
clear reading technology, Cool Type.246

Right now, ClearType technology is a nice feature in the Windows
XP operating system, and Adobe Systems’ latest products are similarly
improved. But they are unlikely to be decisive in persuading users to
invest in e-books. It will be perhaps ten years before all the technologies
are in place to make e-books an attractive proposition for the average
consumer. Screen technology is advancing on two fronts, hardware and
software; both are equally important. If these essential software inven-
tions are to take place, the innovating firms need to be able to share
information in the same way and with the same kind of protection af-
forded to hardware makers.

An even more distant prospect is speech recognition technology.247
Anyone who has used dictation software or conversed with an interactive
voice response system will appreciate how immature speech recognition
technology is today. Having just written a 380 page book using IBM’s
ViaVoice dictation software, I can assert it was just about worth the has-
sle.248 When I first tried the software in 1995, I gave up after a few hours,
but with each release the product got better and better. Much of this im-
provement is due to IBM’s speech recognition research, for which it has
obtained 170 software patents in the last 10 years.249 IBM has been work-
ing on speech recognition for 25 years. Perhaps in another 25 years we
will have computers without keyboards and voice response systems that
really do listen, understand and speak. But this is by no means certain—
speech recognition is a long term investment of uncertain rewards.250

 245. Microsoft Reader Uses ClearType Technology and Traditional Typography to En-
hance On-Screen Reading, Microsoft PressPass, at http://www.microsoft.com/presspass/
features/1999/08-30seybold.asp (Aug. 30, 1999).
 246. Paul Hilts, Adobe Shows CoolType, Publishers Wkly., Mar. 20, 2000, at 12; U.S.
Patent No. 5,929,866 (issued Jul. 27, 1999).
 247. For an accessible history of speech recognition, see Alan A. Andolsen, Can You
Understand Me Now?, 38 Info. Mgmt. J. 52 (2004).
 248. For another user perspective on ViaVoice, see Diane Brady, The Single-Handed
Reporter, Bus. Wk., May 12, 2003, at 90.
 249. See IBM, Human Language Technologies, at http://www.research.ibm.com/hlt/
html/patents.html (last visited May 8, 2005).
 250. For a less than sanguine view on the current state of speech recognition, see
Stephen Manes, Good Enough Isn't, Forbes, Oct. 28, 2002, at 310.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

240 Michigan Telecommunications and Technology Law Review [Vol. 11:191

IBM is just one player in this hugely important field with many
competitors, large and small.251 Thousands of patents have been issued in
the last 25 years: recognizers for continuous speech; recognition in the
presence of noise; systems for high accuracy with a limited vocabulary;
systems for acceptable accuracy with a wide vocabulary; language mod-
els and error correction techniques; and semantic analyzers to extract the
meaning of utterances.252 Dictation software that retails at fifty to a hun-
dred dollars builds on these innovations. Hundreds of other speech
recognition applications will eventually emerge.

IX. The Software Patent Thicket

Software patents, for instance, can protect a single line of code
that tells a computer to do a specific task. This might include
telling one computer program to activate another program.

Such narrow slicing of software development can hinder inven-
tion of fully formed technologies, which often are built on the
work of others, critics argue.

. . . Small firms have an increasingly difficult time breaking
through patent “thickets” amassed by large firms. International
Business Machines Corp., the world’s patent leader, received
22,357 from 1993 to 2002 and earned roughly $10 billion in li-
censing fees from them.

—Jonathan Krim253

There is widespread concern in SMEs and the open-source commu-
nity of inadvertently infringing on a patent, thereby rendering oneself
open to a ruinous lawsuit. The fear is somewhat exaggerated. I know of
no patent that protects “a single line of code,” cited in the above quota-
tion, but perhaps it is a theoretical possibility. Additionally, while IBM
does earn significant royalties on its patents, royalties are earned on both
hardware and software patents, predominantly the former.254

 251. Competitors in the speech recognition market include AT&T, Hitachi, Microsoft,
Philips, Siemens, Xerox, and dozens of others, large and small. See Savitha Srinivasan & Eric
Brown, Is Speech Recognition Becoming Mainstream? Computer, Apr. 2002, at 38.
 252. See generally id.
 253. Jonathan Krim, Patenting Air or Protecting Property? Information Age Invents a
New Problem, Wash. Post, Dec. 11, 2003, at E1.
 254. Press Release, IBM Corp., IBM Tops U.S. Patent List for 8th Consecutive
Year (Jan. 10, 2001), at http://www-1.ibm.com/press/PressServletForm.wss?MenuChoice=
pressreleases&TemplateName=ShowPressReleaseTemplate&SelectString=t1.docunid=1433&

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 241

The LZW and RSA patents discussed in section 6 were atypical in
that they were major innovations well known to the great majority of
software practitioners working in the relevant field. However, as with
other technologies, in practice most patents are granted for incremental
innovations that do not in themselves amount to very much. In the ag-
gregate, however, they can transform a product. The patented
improvements for spelling and grammar checking in Microsoft Word are
a typical example.

Consider what happens when I type the following (admittedly
somewhat contrived) sentence:

“its goin to be gorilla warfare in teh pyrenees” said henry.

As Word struggles to make sense of this sentence, several patented
innovations are called into play.255 Automatically, the lower case i in its
and the lower case p in pyrenees are capitalized; teh is corrected to the;
and the quotation marks are converted to “smart” quotes. In addition, a
wavy red line appears under the words goin and henry and a wavy green
line under gorilla. All this occurred in the “background” without me
having to invoke proofing tools. The “autocorrect” and smart quotes fea-
tures are protected by patent 5,787,451 and background checking is
protected by patents 5,787,451 (the ’451 patent) and 5,761,689. Right
clicking over the word goin gives a menu of five correct spellings to
choose from, of which going is the first—I select it. Likewise I change
henry to Henry. This innovation, which places candidate corrections in
order of likelihood based on the user’s typing history, is protected by
patent number 6,377,965. Having done this a wavy green line now ap-
pears under its; a right click makes the correction to it’s. The wavy green
line under gorilla indicates a grammar or semantic error; right clicking
offers the alternative guerrilla. This is an impressive innovation. The
word gorilla is found to be incorrect because of its surrounding context;
this feature is protected by patent 5,940,847, “System and method for
automatically correcting multiword data entry errors.”

At first sight, this looks an impressive achievement, and in many
ways it is. But it is also revealing of the state of the art and how many
more patented innovations will be needed to do a really good job. For
example, although Word picked up the incorrect capitalizations of pyre-
nees and henry, it would not have corrected china or martin, in the same
places, because they are nouns in their own right; nor would it have

TableName=DataheadApplicationClass&SESSIONKEY=any&WindowTitle=Press+Release&
STATUS=publish (last visited May 8, 2005).
 255. U.S. Patent No. 6,377,965 (issued Apr. 23, 2002); U.S. Patent No. 5,940,847 (is-
sued Aug. 17, 1999); U.S. Patent No. 5,787,451 (issued Jul. 28, 1998); U.S. Patent No.
5,761,689 (issued Jun. 2, 1998).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

242 Michigan Telecommunications and Technology Law Review [Vol. 11:191

objected to farther in place of Henry, when father might have been in-
tended. It detects gorilla warfare but not running saw. Word’s semantic
checking has a long way to go.

These word-processor innovations are consonant with the kind of
patented improvements that transformed the typewriter in the period
1890–1910. Indeed, it seems that Word may be rather like the typewriter,
in that it will not be perfected in one fell swoop, but by the accumulation
of hundreds of tiny improvements. Given Word’s current shortcomings
in the proof checking department and the irregularity of the English lan-
guage, many more patented improvements will be needed before it
achieves technical closure.256 Incidentally, this relatively slow progress
brings into perspective the commonly voiced concern that patents last
too long relative to the speed of progress of the software industry. Word
processing software packages are now about 25 years old, and innova-
tion is not slowing. The speed of development seems to be not dissimilar
to that of the typewriter a century ago.

Much criticism of minor software patents—such as those character-
ized above—is directed to their obviousness and lack of novelty. The
matter of obviousness is partly a difference in perception between soft-
ware practice and patent examination. A software practitioner thinks of a
patent as being obvious if he or she can readily replicate the patented
code. Whereas, a patent examiner would ask whether an individual “with
ordinary skill in the art” could readily make the innovation, at the time
the invention was made. That is, without the benefit of hindsight and
without having seen the invention. Surely the practitioners as well as
examiner would be satisfied with the nonobviousness of the RSA patent,
but probably not the Microsoft Word patents. However, there is much
more to the ’451 patent, for example, than putting a wavy red line under
misspelled words. Besides working in the background, using otherwise
wasted processor power, the innovation keeps a record of which words
have been spell checked, and when the file is saved the state of spelling
correction is preserved along with the text so the state of the spelling
checker persists between editing sessions.

It is often suggested that the sheer number of software patents being
granted is evidence enough that the threshold of obviousness is too low.
It may be true that there are too many obvious patents, but the number
granted does not support the contention. In 2001 (the latest year for
which there are statistics) out of a total of 166,000 patents issued,

 256. On technical closure, see generally Nathan Rosenberg, Inside the Black Box:
Technology and Economics (1982).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 243

20,000-plus software patents were granted.257 By comparison, the num-
ber of patents in the major classifications chemical, electrical, and
mechanical were approximately 46,000, 57,000 and 63,000 respec-
tively.258 Given that software is now one of the top U.S. industries—
certainly in the same league as chemical, electrical and mechanical
manufacturing—the number of patents is not self-evidently dispropor-
tionate.

Establishing novelty is also problematic. The patent examiner has
three main sources for prior art: the patent database, the academic tech-
nical literature, and the ephemeral literature. Now that software patents
have been granted in large numbers for a decade or more the patent lit-
erature is becoming a significant source of prior art. There is a
comprehensive classification system, frequently updated, and a publicly
accessible search engine to the patent database. For example, the ’451
patent is in class 715/533: that is “data processing: presentation process-
ing of document” subclass “spell check.” There are not many patents to
search through to establish prior art. The academic literature is also rea-
sonably easy to search, much as in any other scientific discipline.
However, the academic literature is not a good source for publications in
practical areas such as spell checking, as the literature tends to focus on
weightier topics like mathematical algorithms. This is a long-standing
cultural schism in computer science, reflecting the subject’s origins in
mathematics departments; the academy tends to value theoretical results
more than empirical. A topic such as spell checking is much more likely
to be found in the ephemeral literature. This would include product lit-
erature, published conference proceedings, and university research
reports. There is very little of this material readily available, even in the
Library of Congress—indeed, not much survives anywhere for more
than a decade after publication. In 1995, Professor Bernard Galler of the
University of Michigan, a distinguished computer scientist, led the estab-
lishment of the Software Patent Institute which aims to collect the
ephemeral literature and make it easily searchable.259 This is a long and

 257. The USPTO does not break out software patents in its statistical summaries. The
estimate of 20,000-plus is widely used. See, e.g., Robert Hunt and James Bessen, The Software
Patent Experiment, Bus. Rev. (Fed. Reserve Bank of Phila.), Third Quarter 2004, at 22.
 258. See U.S. Patent And Trademark Office, All Technologies Report, January
1/1963–December 31, 2001 (Mar. 2002); U.S. Pat. & Trademark Off., Technology As-
sessment and Forecast Report: Chemical Classes, 1977–December 2001 (Apr. 2002);
U.S. Pat. & Trademark Off., Technology Assessment and Forecast Report: Electri-
cal Classes, 1977–December 2001 (Apr. 2002); U.S. Pat. & Trademark Off.,
Technology Assessment and Forecast Report: Mechanical Classes, 1977–December
2001 (Apr. 2002).
 259. See Software Patent Institute’s website, at http://www.spi.org/ (last visited May 8,
2005).

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

244 Michigan Telecommunications and Technology Law Review [Vol. 11:191

difficult project, and its coverage is necessarily partial. The Software
Patent Institute is typical of the way in which, historically, the patent
system has adjusted to change.

It would be fair to say that determining the prior art is difficult for
an experienced patent examiner or patent attorney, but next to impossi-
ble for a software practitioner. Worse, few software practitioners would
think even to look.

Suppose a developer in an SME had seen Microsoft Word’s spell
checker and wanted to use something similar in his own program. (This
is not an entirely hypothetical example—there are several clones of
Microsoft Word.) First, the abiding culture of small-time software de-
velopment is that if one has seen a feature one likes in another
program, it is legitimate to use it in one’s own program. This might
surprise people in other industries. A pharmaceutical manufacturer
would not suppose it was legitimate to copy the drug of another manu-
facturer simply because it was easy to do. Although the patent protects
a particular drug, it is understood that the patent is just the end point of
a long expensive road of discovery, fabrication, and testing with pa-
tients. In the same way, although a spell-check patent protects an
apparently simple piece of code, it too is the end result of a process of
discovery, fabrication, and user testing. However, it must also be said
that there is a difference in degree between a spelling checker and a
new antibiotic. This has not been reflected in the disproportionate
damages awarded in some of the more celebrated software patent in-
fringement suits—the recent $500 million Eolas v Microsoft suit being
just the latest example.260 The courts could do a much better job in as-
sessing reasonable damages.

Suppose, however, that a small-time software firm wanted to be
sure its product did not infringe on a patent. Where would it begin?
One problem is that, unlike pharmaceuticals, software typically makes
use of tens or hundreds of collateral inventions, the great majority of
which are in the public domain, but a few might be patented.261 Which
ones? It is rarely obvious that a feature of a software product is patent
protected. For example, the Microsoft Word program gives no hint that
many of its features are patented (although it does have copyright no-
tices for the various dictionaries and other components bundled with
it). Unlike a large firm, an SME does not have the resources to make an
extended search for prior art—a ten person firm does not have a legal
department, and its developers are too busy cranking out code, trying

 260. Robert A. Guth & Marcelo Prince, Microsoft Faces $521 Million Verdict, Wall St.
J. (Eastern edition), Aug. 12, 2003, at A3.
 261. Bessen & Maskin, supra note 77.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 245

to make a living in a very competitive industry. Indeed, a developer
could implement a background spelling checker faster than he could
determine whether or not he was infringing an existing patent. No
wonder SMEs are hostile to software patents. They get in the way, and
life was surely easier with trade secrets.

It is interesting that hardware manufacturers have little difficulty
with the patent environment. A laptop manufacturer, for example, as-
sembles finished goods from many sources, which are collectively
covered by hundreds if not thousands of patents. However, when elec-
tronic components are sourced, any licensing fees for patents are
bundled invisibly in the price. Likewise in the sub-components of com-
ponents, and so on up the supply chain. Thus patent transaction costs
for end manufacturers are negligible. By contrast, there is no meaning-
ful supply chain for software. The industry is almost unique for the
monolithic production of finished goods. Software components have
been suggested as a solution to the perennial software crisis on many
occasions, but the components market remains stubbornly undevel-
oped.262 This is due not least to problems of IP appropriation for which
patents have only just begun to be explored.263

Frustration with software patents by SMEs is partly a consequence
of the unusual structure of the software industry. The industry is very
low in concentration compared with other industries, such as pharma-
ceuticals, automobiles, or consumer electronics. In these industries
there are typically fewer than a score of global players. These vast, ver-
tically integrated firms created the consumer society of the twentieth
century.264 The same historical processes were also at work in the in-
formation technology industries. In the early 1900s there were about
ten global typewriter manufacturers; in the 1960s there were eight
mainframe computer manufacturers (IBM and the seven dwarves).265
While these industries started with many entrants, they became fewer
after consolidation and shake out. Software has done the opposite. In
the mid 1960s there were perhaps a hundred software firms, and the
number has steadily grown. Today there are at least 35,000 firms
worldwide.266 One reason for this phenomenon is that in typewriter and
mainframe computer manufacture the capital requirements for entry

 262. W. Wayt Gibbs, Software’s Chronic Crisis, Sci. Am., Sept. 1994, at 86.
 263. See Knut Blind & Jakob Edler, Idiosyncrasies of the Software Development Process
and Their Relation to Software Patents: Theoretical Considerations and Empirical Evidence,
5 Netnomics 71 (2003); Lemley & O’Brien, supra note 14.
 264. The rise of vertically integrated firms is best described in Chandler, supra note
79.
 265. For typewriter firms, see supra note 76. For mainframe manufacturers, see Fisher,
supra note 105, at 65–98.
 266. See supra note 4.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

246 Michigan Telecommunications and Technology Law Review [Vol. 11:191

were high, and became higher. In software, the entry costs have stead-
ily declined. Today, all one needs is a PC and an Internet connection.

The extreme fragmentation of the software industry may not be op-
timal from an economic viewpoint. The industry structure is certainly
very unusual. There has been considerable consolidation and Merger &
Acquisition activity, resulting in a small number of global players—
such as Microsoft, Oracle and Computer Associates—but at the same
time there remains an enormous number of very small players, and
their number is growing. Indeed, the software industry’s structure has
some parallels with the retail sector, where a few giant firms, such as
Wal-Mart and Sears, co-exist with tens of thousands of mom-and-pop
corner stores. While the giant retailers bring economic efficiency, we
are all aware of the negative social consequences. By and large, in the
United States the policy has been non-interventionist, in both retailing
and software—let the market decide. This is not true in Europe, for
example, where lobbying by the open-source community and SMEs
has caused legislation on software patents—favored by large firms such
as IBM and Siemens—to stall. Software patents clearly have a political
dimension: Europe has only one global software player, but thousands
of SMEs.267

It may be that the lack of concentration in the software industry is
a reflection of its immaturity. Twenty or fifty years from now the in-
dustry may be much more concentrated, with a score of global players
and relatively few SMEs. Whether or not this comes to pass, today’s
patent system should be determined by the broad needs of society, not
the special interests of the producers—whether they be global power
houses or shareware cooperatives.

Conclusion

It is ten years since software patents have been issued in large
numbers. The anxieties expressed in the early 1990s about the effect
patents would have on the software industry have not been realized.
History shows us that software patents are not so different from other
patents in the information technology industries, and that the patent
system is capable of adjusting to the particularities of individual indus-
tries. For example, early in the last century chemical processes were
thought to be unpatentable, but the system soon adapted to a new real-

 267. See Bakels & Hugenholtz, supra note 137; Andy Reinhardt, Inventing a Better
Patent Law: Can Europe Spur Software Innovation while Safeguarding Intellectual Property,
Bus. Wk., Dec. 1, 2003 at http://www.businessweek.com/print/magazine/content/03_48/
b3860058_mz054.htm?chan=mz&.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

Spring 2005] An Historical Perspective on Software Patents 247

ity and now it is difficult to imagine this issue was once controversial.
With software and business method patents the US Patent and Trade-
mark Office is instituting changes that will make the system work
better. For example, it has increased the number and quality of soft-
ware patent examiners, and in time the databases and searching
mechanisms for prior art will improve. It is also likely that cross-
licensing, and patent pools and packages will mitigate the thicket prob-
lem.268 In some cases firms have made their patents available free of
royalty to open source developers.269

To offset the disadvantages of patent thickets, history shows that
there are significant benefits of patents. Notably, the disclosure re-
quired by a patent specification has the potential to mitigate the trade
secrecy that has been endemic to the software industry for most of its
50 year history. Today there is a huge economic loss arising from the
constant reinvention that takes place in the software industry. It is pos-
sible that one day the industry will be based on the assembly of
software components instead of always writing software from scratch.
Such software reuse is widely practiced within individual firms in the
software industry.270 Patents would enable such software reuse to be
externalized.

However, it is in the orderly development of broad prospects that
the greatest benefits of software patents may come. In section 8
examples were given of how software patents have enabled the co-
ordination of research by many players in the fields of screen
technologies and speech recognition. These are just two of the problem
domains that need to be conquered. We are at the very beginning of the
information age, and other critical problems include Internet security
(particularly the elimination of viruses and spam email), truly
intelligent search engines (that can, for example, search images as well
as text), and the whole realm of artificial intelligence. If private
industry is to invest in developing these technologies it will do so more

 268. For example, a patent pool MPEG LA has been created by a group of firms for
MPEG video compression technology. The co-operating organizations include Columbia
University, Electronics and Telecommunications Research Institute of Korea (ETRI), France
Télécom, Fujitsu, LG Electronics, Matsushita, Mitsubishi, Microsoft, Motorola, Nokia, Phil-
ips, Robert Bosch GmbH, Samsung, Sharp, Sony, Toshiba, and Victor Company of Japan
(JVC). Press Release, MPEG LA, MPEG LA Announces Terms of Joint H.264/MPEG-4 AVC
Patent License (Nov. 17, 2003), at http://www.mpegla.com/news/n_03-11-17_avc.html.
 269. For example, since participating in open-source development IBM has licensed, on
a royalty-free basis, patents used in its contributions, a policy that has been endorsed by the
Open Source Initiative. IBM Europe, Response to the Services of the Directorate General for
the Internal Market: The Patentability of Computer-Implemented Inventions (Consultation
Paper, Oct. 19, 2000), at 8, at http://europa.eu.int/comm/internal_market/en/indprop/
comp/ibm.pdf.
 270. See Lemley & O’Brien, supra note 14.

CAMPBELL-KELLYTYPE.DOC 7/8/2005 1:54 PM

248 Michigan Telecommunications and Technology Law Review [Vol. 11:191

willingly with greater assurance for protection of their investment.
Trade secrecy is antithetical to cooperation, while copyright is wholly
inadequate in this context. In this regard, patent protection for software
inventions may be the motivational force required to encourage this
innovation and cooperation.

